ВИДЫ РАСПРЕДЕЛЁННЫХ НАГРУЗОК НА СООРУЖЕНИЯ

Бакушев Сергей Васильевич,

Пензенский государственный университет архитектуры и строительства, г. Пенза,

доктор технических наук, профессор кафедры «Механика».

Колесникова Мария Сергеевна,

Пензенский государственный университет архитектуры и строительства, г. Пенза,

студент.

Аннотация

Рассматриваются вопросы определения равнодействующей и точки её приложения для различных видов распределённых погонных нагрузок, действующих на стержень: равномерно-распределённая нагрузка; нагрузка, распределённая по линейному закону; нагрузка, распределённая по закону квадратной параболы; нагрузка, распределённая по дуге окружности. Рассмотрен числовой пример определения внутренних усилий в стержне, находящемся в условиях плоского поперечного изгиба и загруженного погонной нагрузкой, распределённой в первом случае по квадратной параболе, и, во втором случае – по дуге окружности.

Ключевые слова: сооружения, распределённые нагрузки, равнодействующая, плоский поперечный изгиб.

TYPES OF DISTRIBUTED LOADS ON STRUCTURES

Bakushev Sergey Vasilevish

Penza State University of Architecture and Construction, Penza, Doctor of Sciences, Professor of the Department "Mechanics".

Kolesnikova Maria Sergeevna,

Penza State University of Architecture and Construction, Penza, student.

Abstract

Discusses determining the resultant and the point of its applications for different kinds of linear distributed loads acting on the rod: uniformly distributed load; load, distributed by linear; load, distributed according to the law, the square parabola; load, distributed through the arc of a circle. Considered a numeric example of defining domestic efforts in the Web, in terms of a flat lateral bending and loaded • linear load, distributed in the first case, the square parabola, and, in the second case, through the arc of a circle.

Keywords: constructions, distributed load, the resultant, flat transverse bending.

Введение

В сопротивлении материалов различают несколько видов нагрузок, действующих на здания и сооружения [1]. Прежде всего, это сосредоточенные нагрузки – сосредоточенные силы и сосредоточенные моменты – условно считающиеся приложенными в точке. Так как через точку, то есть объект, не имеющий геометрических размеров, невозможно передать воздействие конечного значения, то сосредоточенные силы и моменты – это удачная схематизация реальности, позволяющая построить физико-математическую расчётную модель.

Далее – это распределённые нагрузки, передающие на сооружение воздействие конечного значения через определённую площадь. Распределённая нагрузка измеряется в единицах силы, отнесённой к единице площади: $\frac{H}{M^2}$. Примерами таких нагрузок являются: давление снега на кровлю сооружения; давление зерна на стенки и дно силосной башни; давление воды на плотину;

давление фундамента здания на основание; и так далее. При расчёте многих элементов конструкции распределённую по площади нагрузку приводят к нагрузке, относящейся к длине. Такая нагрузка называется *погонной* и измеряется в единицах силы, отнесённой к единице длины: <u>*H*</u>.

Распределённая нагрузка в каждой точке её действия характеризуется числовым значением её интенсивности и направлением вектора интенсивности этой нагрузки. Интенсивность распределённой нагрузки в общем случае определяется как предел отношения равнодействующей сил на рассматриваемой площадке (на рассматриваемой длине) к её площади (длине), стремящейся к нулю.

Погонная нагрузка

Интенсивность погонной нагрузки определяется выражением:

$$q = \lim_{\Delta l \to 0} \frac{\Delta R}{\Delta l}.$$
 (1)

Равнодействующая распределённой по какому-либо закону нагрузки q(z) определяется как сумма элементарных сил q(z)dz, действующих на отрезке a-b (рисунок 1):

2)

$$R = \int_{a}^{b} q(z) dz \,. \tag{6}$$

Для определения точки приложения равнодействующей *R* распределённой нагрузки, воспользуемся равенством моментов OT распределённой q(z)нагрузки И равнодействующей *R* относительно начальной точки приложения распределённой нагрузки (точка «*a*»):

Рисунок 1- Погонная нагрузка

$$\sum M_{a} = 0: Rl_{1} = \int_{a}^{b} q(z)zdz.$$
(3)

Рассмотрим несколько видов погонной нагрузки, найдём равнодействующие и точки их приложения.

I. Нагрузка, равномерно-распределённая на длине *l* (рисунок 2).

Так как q = Const, то по формуле (2) получаем:

$$R = \int_{0}^{l} q \cdot dz = ql \tag{4}$$

Используя выражение (3), найдём точку приложения равнодействующей:

$$\sum M_{0} = 0: Rl_{1} = \int_{0}^{l} qz \cdot dz,$$

то есть $l_{1} = \frac{1}{R} \int_{0}^{l} qz dz = \frac{ql^{2}}{2ql} = \frac{l}{2}.$ (5)

Рисунок 2 - Равномернон. распределённая нагрузка

Нагрузка, распределённая по закону треугольника (рисунок 3). В этом случае

(6)

Рисунок 3 - Треугольная

Рисунок 4 - Трапециевидная нагрузка

 $q(z) = q_2 \frac{z}{l},$

то есть

Следовательно, $l_1 = \frac{1}{R} \int_{0}^{l} q_2 \frac{z^2}{l} dz = \frac{2}{3}l.$

 $R = \int_{0}^{l} q_2 \frac{z}{l} dz = q_2 \frac{l}{2}.$

III. Нагрузка трапециевидная (рисунок 4). В этом случае

$$q(z) = q_1 + (q_2 - q_1)\frac{z}{l}.$$

Тогда

$$R = \int_{0}^{l} \left[q_{1} + (q_{2} - q_{1}) \frac{z}{l} \right] dz = q_{1}l + (q_{2} - q_{1}) \frac{l}{2}.$$

Следовательно

$$l_{1} = \frac{1}{R} \int_{0}^{l} \left[q_{1} + (q_{2} - q_{1}) \frac{z}{l} \right] z dz = \frac{q_{1} + 2q_{2}}{q_{1} + q_{2}} \frac{l}{3}.$$
 (11)

IV. Нагрузка, изменяющаяся по дуге параболы (рисунок 5).

Уравнение параболы в общем случае имеет вид

$$y(z) = az^{2} + bz + c$$
. (12)

Так как в соответствии с рисунком 5:

- при z = 0, $y = q_1$, то есть $c = q_1$; - при $z = l_0$, $y = q_0$, то есть $al_0^2 + bl_0 + c = q_0$; - при z = l, $y = q_2$, то есть $al^2 + bl + c = q_2$.

Отсюда следует, что

$$a = \frac{1}{l_0 - l} \left(\frac{q_0 - q_1}{l_0} - \frac{q_2 - q_1}{l} \right);$$

$$b = \frac{q_0 - q_1}{l_0} - \frac{l_0}{l_0 - l} \left(\frac{q_0 - q_1}{l_0} - \frac{q_2 - q_1}{l} \right);$$

$$c = q_1.$$

Рисунок 5 - Параболическая нагрузка

Следовательно, уравнение дуги параболы на отрезке *l* получает вид:

$$q(z) = \frac{1}{l_0 - l} \left(\frac{q_0 - q_1}{l_0} - \frac{q_2 - q_1}{l} \right) z^2 + \left[\frac{q_0 - q_1}{l_0} - \frac{l_0}{l_0 - l} \left(\frac{q_0 - q_1}{l_0} - \frac{q_2 - q_1}{l} \right) \right] z + q_1.$$
(13)

Теперь нетрудно получить расчётные формулы для вычисления равнодействующей параболической нагрузки и точки её приложения:

$$R = \int_{0}^{l} q(z)dz = \int_{0}^{l} (az^{2} + bz + c)dz = \frac{al^{3}}{3} + \frac{bl^{2}}{2} + cl, \qquad (14)$$

$$l_{1} = \frac{1}{R} \int_{0}^{l} zq(z)dz = l \frac{\frac{al^{2}}{4} + \frac{bl}{3} + \frac{c}{2}}{\frac{al^{2}}{3} + \frac{bl}{2} + c}.$$
(15)

V. Нагрузка, изменяющаяся по дуге окружности (рисунок 6). Уравнение окружности на плоскости *Z0Y* имеет вид:

$$z^{2} + y^{2} + 2nz + 2my + p = 0.$$
 (16)

В нашем случае:

- при
$$z = 0$$
, $y = q_1$, то есть $q_1^2 + 2mq_1 + p = 0$;
- при $z = l_0$, $y = q_0$, то есть
 $l_0^2 + q_0^2 + 2nl_0 + 2mq_0 + p = 0$;
- при $z = l$, $y = q_2$, то есть
 $l^2 + q_2^2 + 2nl + 2mq_2 + p = 0$.

Отсюда получаем

изменяющаяся по дуге окружности

Рисунок 6 - Нагрузка,

$$m = \frac{l_0 (l^2 + q_2^2 - q_1^2) - l(l_0^2 + q_0^2 - q_1^2)}{2[l(q_0 - q_1) - l_0(q_2 - q_1)]};$$

$$n = \frac{(q_0 - q_1)(l^2 + q_2^2 - q_1^2) - (q_2 - q_1)(l_0^2 + q_0^2 - q_1^2)}{2[l_0(q_2 - q_1) - l(q_0 - q_1)]};$$

$$p = -q_1^2 - 2q_1m.$$

Разрешая уравнение (16) относительно функции y(z) = q(z), получаем уравнение дуги окружности на отрезке *l*:

$$q(z) = -m + \sqrt{m^2 - (z^2 + 2nz + p)}.$$
 (17)

В формуле (17) перед радикалом взят знак «+», так как дуга окружности проведена в положительной четверти осей координат *Z*0*Y* и ордината y(z) > 0.

Далее получим расчётные формулы для определения равнодействующей нагрузки, очерченной по дуге окружности, и точки её приложения.

$$R = \int_{0}^{l} q(z)dz = -\int_{0}^{l} mdz + \int_{0}^{l} \sqrt{-z^{2} - 2nz + m^{2} - p} \cdot dz = -ml + \left[\frac{z + n}{2}\sqrt{-z^{2} - 2nz + m^{2} - p} - (m^{2} - p + n^{2})\operatorname{arc}\operatorname{Sin}\frac{-z - n}{\sqrt{m^{2} - p + n^{2}}}\right],$$
(18)
$$l_{1} = \frac{1}{R}\int_{0}^{l} zq(z)dz = -\frac{ml^{2}}{2} + \frac{1}{3}(z^{2} + 2nz - m^{2} + p)\sqrt{-z^{2} - 2nz + m^{2} - p} - \left[\frac{z + n}{2}\sqrt{-z^{2} - 2nz + m^{2} - p} - (m^{2} - p + n^{2})\operatorname{arc}\operatorname{Sin}\frac{-z - n}{\sqrt{m^{2} - p + n^{2}}}\right].$$
(19)

В рассмотренных случаях ветви и дуги параболы (рисунок 5) и дуги

окружности (рисунок 6) направлены вниз. Если ветви дуги будут направлены вверх, то участок *l* нужно будет разделить на два интервала и вычислять равнодействующие и точки их приложения отдельно на левом и правом интервалах (рисунок 7).

Пример.

Рисунок 7 - Ветви дуг

На шарнирно опёртый стержень длиной l = 6 M, находящийся в условиях

нагрузки, направленные вверх

плоского поперечного изгиба, действует погонная нагрузка, значение которой задано в трёх точках:

Построить эпюры внутренних усилий для двух случаев аппроксимации распределённой нагрузки:

1. Распределённая нагрузка аппроксимируется дугой параболы.

2. Распределённая нагрузка аппроксимируется дугой окружности. <u>Решение.</u>

В соответствии с вышесказанным, найдём коэффициенты для аппроксимации нагрузки дугой параболы и дугой окружности соответственно:

$$a = -166,667 \frac{\text{H}}{\text{M}^3}; \ b = 1,167 \cdot 10^3 \text{ fla}; \ c = 4,0 \cdot 10^3 \frac{\text{H}}{\text{M}}.$$

 $m = -2,25 \frac{\text{KH}}{\text{M}}; \ n = -3,375 \frac{\text{KH}^2}{\text{M}^3}; \ p = 2,0 \frac{\text{KH}^2}{\text{M}^2}.$

На рисунках 8а и 8б показаны графики нагрузки, аппроксимируемой дугой параболы и дугой окружности соответственно.

Рисунок 8 - Графики нагрузки: а) парабола; б) дуга окружности

Размерность параболической нагрузки – $1\frac{H}{M}$, размерность нагрузки, описанной дугой окружности – $1\frac{\kappa H}{M}$.

Внутренние усилия будем вычислять по формулам:

$$M_{x}(z) = R_{A}z - \int_{0}^{z} q(\hat{z})(z-\hat{z})d\hat{z}; \quad Q_{y}(z) = R_{A} - \int_{0}^{z} q(\hat{z})d\hat{z}.$$

Для нагрузки, описанной дугой параболы, имеем:

$$R = \int_{0}^{l} q(z) dz = 33,0 \text{ kH}; \quad l_{1} = \frac{1}{R} \int_{0}^{l} zq(z) dz = 3,091 \text{ m}.$$

Опорные реакции:

- на левой опоре
$$R_A = \frac{1}{l} \int_0^l q(z)(l-z) dz = 16,0 \text{ kH};$$

- на правой опоре $R_B = \frac{1}{l} \int_0^l q(z) z dz = 17,0 \text{ kH}.$

На рисунках 9а и 9б показаны эпюры изгибающих моментов и поперечных сил соответственно.

Рисунок 9 - Эпюры изгибающих моментов и поперечных сил для нагрузки, очерченной по параболе

При этом максимальное значение изгибающего момента $M_x^{\text{max}} = 25,88 \text{ кH} \cdot \text{м}$ достигается в сечении z = 3,042 м. Значение поперечной силы на левой опоре $Q_y^{\text{nes}} = 16,0 \text{ кH}$, значение поперечной силы на правой опоре $Q_y^{\text{nes}} = 17,0 \text{ кH}$. Поперечная сила равна нулю в сечении z = 3,042 м.

Для нагрузки, описанной дугой окружности, имеем:

$$R = \int_{0}^{l} q(z) dz = 33,465 \text{ kH}; \quad l_{1} = \frac{1}{R} \int_{0}^{l} zq(z) dz = 3,07 \text{ m}.$$

Опорные реакции:

- на левой опоре
$$R_A = \frac{1}{l} \int_0^l q(z)(l-z) dz = 16,342 \text{ kH};$$

- на правой опоре $R_B = \frac{1}{l} \int_0^l q(z) z dz = 17,123 \text{ kH}.$

Рисунок 10 - Эпюры изгибающих моментов и поперечных сил для нагрузки, очерченной по дуге окружности

На рисунках 10а и 10б показаны эпюры изгибающих моментов и поперечных сил соответственно:

При этом максимальное значение изгибающего момента $M_x^{\text{max}} = 26,176 \text{ кH} \cdot \text{м}$ достигается в сечении z = 3,028 м. Значение поперечной силы на левой опоре $Q_y^{\text{лев}} = 16,342 \text{ кH}$, значение поперечной силы на правой опоре $Q_y^{\text{npas}} = 17,123 \text{ кH}$. Поперечная сила равна нулю в сечении z = 3,028 м.

Выводы и заключения

Анализ полученных результатов показывает, нагрузка что аппроксимированная дугой большее окружности даёт значение равнодействующей, а, следовательно, и большие значения максимального изгибающего момента и поперечной силы по сравнению с соответствующими значениями указанных величин при аппроксимировании нагрузки дугой параболы.

Вместе с тем следует отметить, что если аппроксимация распределённой нагрузки дугой параболы, в силу её однозначности, никаких затруднений не вызывает, то аппроксимация функции нагрузки многозначной функцией – дугой окружности – требует щепетильности и, нередко, вызывает трудно преодолимые математические закавыки.

Библиографический список:

1. Сопротивление материалов: Учебник для вузов / под ред. А.Ф. Смирнова. Изд. 3-е, перераб и доп. М.: Высшая школа, 1975. 480 с.