ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТОНКОСТЕННОГО Z-ОБРАЗНОГО СТЕРЖНЯ С ОТБОРТОВКОЙ

Волков Владимир Павлович,

Пензенский государственный университет архитектуры и строительства, г. Пенза,

кандидат технических наук, доцент кафедры «Механика».

Кустова Ольга Владимировна,

Пензенский государственный университет архитектуры и строительства, г. Пенза,

аспирант.

Аннотация

Статья посвящена определению геометрических характеристик гнутого тонкостенного стержня Z-образного профиля с отбортовкой при расчете его на растяжение и изгиб с кручением. Приведены расчетные формулы для определения относительных значений длины контура, главных осевых моментов инерции и главных осевых моментов сопротивления, главных секториальных координат.

Ключевые слова: гнутый тонкостенный стержень, Z-образный профиль, главные центральные оси сечения, главные осевые моменты инерции, главные осевые моменты сопротивления, главные секториальные координаты.

GEOMETRIC CHARACTERITICS THIN-WALLED Z-SHAPED ROD WITH EDGE

Volkov Vladimir Pavlovich,

Penza State University of Architecture and Construction, Penza,

Candidate of Sciences, Associate Professor of the department «Mechanics».

Kustova Olga Vladimirovna,

Penza State University of Architecture and Construction, Penza,

Abstract

Article is devoted to definition of the geometric characteristics of a buckler thin-walled rod Z-shaped profile with edge for calculation this on tension, curve, turn. To deduce a formula of calculation dimensions length of contours, main axes moments of inertia and main axes moments of resistance, main sector coordinates.

Keywords: buckler thin-walled rod, Z-shaped profile, the main central axes section, main axes moments of inertia, main axes moments of resistance, main sector coordinates.

Условные обозначения: XY – главные центральные оси сечения; B=2b – габаритная ширина профиля сечения; H=2h – габаритная высота срединной линии профиля сечения; L – полная длина срединной линии профиля сечения.

Относительные геометрические размеры тонкостенного Z-образного сечения постоянной толщины δ без учета закругления (рисунок 1) определяются в [1, 2]:

$$\frac{B}{H} \Rightarrow \frac{1}{\tan \gamma} \cdot \sqrt{1 + \frac{2}{3\cos \gamma}}; \quad \frac{L}{H} \Rightarrow \frac{B}{H} + \frac{1 + \cos \gamma}{\sin \gamma}.$$

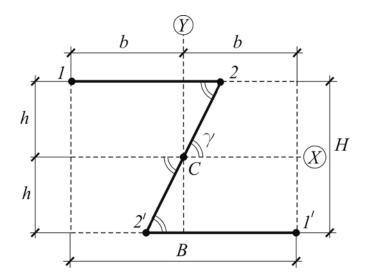


Рисунок 1 – Z-образный профиль без закруглений

Задача определения геометрических размеров гнутого тонкостенного стержня Z-образного сечения постоянной толщины δ с учетом закругления r (рисунок 2) рассмотрена в [3].

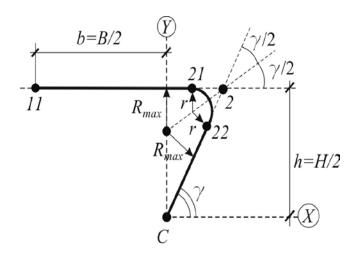


Рисунок 2 – Верхняя половина Z-образного сечения с закруглением

В статье рассматривается задача определения геометрических размеров гнутого тонкостенного стержня Z-образного сечения постоянной толщины δ с отбортовкой s (рисунок 3), т.е. определяется длина s, когда XY – главные центральные оси сечения. Учитывая центральную симметрию, рассмотрим верхнюю половину сечения.

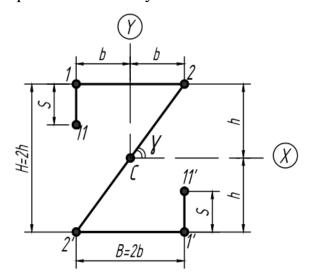


Рисунок 3 – Z-образный профиль с отбортовкой

Дано: H, B, γ = arctan(H/B).

Найти: *s*,

если XY — главные центральные оси сечения.

Декартовые координаты x, y характерных точек и длины соответствующих участков l (рисунок 3).

$$x_{11} = -b;$$
 $y_{11} = h - s > 0;$ $l_{11} = s;$ $x_1 = -b;$ $y_1 = h;$ $l_1 = 2b;$ $x_2 = b;$ $y_2 = h;$ $l_2 = \sqrt{b^2 + h^2}.$

Центральные оси XY (рисунок 3) являются главными [4], если

$$I_{XY} = \int_{L/2} \delta(s) \cdot x(s) \cdot y(s) \cdot ds \Rightarrow 0,$$

$$s \cdot b \cdot \left(h - \frac{s}{2}\right) = \frac{l_2 \cdot b \cdot h}{3},$$

$$s^2 - 2sh + \frac{2}{3}l_2h = 0,$$

$$s = h \cdot \left(1 - \sqrt{1 - \frac{2}{3 \cdot \sin \gamma}}\right),$$

$$\text{где} \quad \sin \gamma \ge \frac{2}{3}, \ m. \ e.$$

$$\frac{H}{B} \ge \frac{2}{\sqrt{5}} \approx 0,89443.$$
(1)

Введем обозначения:

$$\psi = \frac{B}{H} \Rightarrow \frac{b}{h}, \qquad 0 < \psi \le \frac{\sqrt{5}}{2};$$

$$l = \frac{l_2}{h} \Rightarrow \sqrt{1 + \psi^2};$$

$$\varepsilon = \frac{s}{h} \Rightarrow 1 - \sqrt{1 - \frac{2}{3} \cdot l}.$$

Относительная длина контура гнутого Z-образного профиля:

$$\frac{L}{H} = \frac{L/2}{h} \Rightarrow l + 2 \cdot \psi + \varepsilon,$$
где $L/2 = l_2 + 2b + s.$ (2)

Главные осевые моменты инерции определяются по формулам:

$$I_x = \int_A y^2(s) \cdot dA \Rightarrow 2 \cdot \delta \cdot \int_{L/2} y^2(s) \cdot ds \Rightarrow$$
$$\Rightarrow 2 \cdot \delta \cdot \left\{ l_1 \cdot h^2 + \frac{1}{3} \cdot l_2 \cdot y_2^2 + \frac{1}{3} \cdot Y_1^3 - \frac{1}{3} \cdot Y_{11}^3 \right\},$$

$$I_{x} \cdot \frac{1}{2 \cdot \delta \cdot h^{3}} \Rightarrow 2\psi + \frac{l}{3} + \varepsilon - \varepsilon^{2} + \frac{\varepsilon^{3}}{3};$$

$$I_{y} = \int_{A} x^{2}(s) \cdot dA \Rightarrow 2 \cdot \delta \cdot \int_{L/2} x^{2}(s) \cdot ds \Rightarrow$$

$$\Rightarrow 2 \cdot \delta \cdot \left\{ \frac{(2b)^{3}}{12} + \frac{l_{2} \cdot b^{2}}{3} + s \cdot b^{2} \right\},$$

$$I_{y} \cdot \frac{1}{2 \cdot \delta \cdot h^{3}} \Rightarrow \left(\frac{2 \cdot \psi + l}{3} + \varepsilon \right) \cdot \psi^{2}.$$

$$(4)$$

Главные осевые моменты сопротивления определяются по формулам:

$$W_{x} = \frac{l_{x}}{y_{max}} \Rightarrow \frac{l_{x}}{h} \Rightarrow$$

$$\Rightarrow \frac{2 \cdot \delta}{h} \cdot \left\{ l_{1} \cdot h^{2} + \frac{1}{3} \cdot l_{2} \cdot y_{2}^{2} + \frac{1}{3} \cdot Y_{1}^{3} - \frac{1}{3} \cdot Y_{11}^{3} \right\},$$

$$W_{x} \cdot \frac{1}{2 \cdot \delta \cdot h^{2}} \Rightarrow 2\psi + \frac{l}{3} + \varepsilon - \varepsilon^{2} + \frac{\varepsilon^{3}}{3};$$
(5)

$$W_{y} = \frac{l_{y}}{x_{max}} \Rightarrow \frac{l_{y}}{b} \Rightarrow$$

$$\Rightarrow \frac{2 \cdot \delta}{b} \cdot \left\{ \frac{(2b)^{3}}{12} + \frac{l_{2} \cdot b^{2}}{3} + s \cdot b^{2} \right\},$$

$$W_{y} \cdot \frac{1}{2 \cdot \delta \cdot h^{2}} \Rightarrow \left(\frac{2 \cdot \psi + l}{3} + \varepsilon \right) \cdot \psi. \tag{6}$$

Для нахождения главного секториального момента инерции $I_{\omega} = \int_{A} \overline{\omega}^{2}(s) \cdot dA$ введем секториальные координаты ω (удвоенная площадь сектора, где полюс и начальная точка отсчета выбраны в точке C):

$$\omega_{\mathcal{C}} = \omega_{2} \Rightarrow 0;$$

$$\omega_{1} = 2b \cdot h \Rightarrow h^{2} \cdot (2 \cdot \psi);$$

$$\omega_{11} = \omega_{1} + s \cdot b \Rightarrow h^{2} \cdot (2 + \varepsilon) \cdot \psi.$$
(8)

Секториальный статический момент:

$$S = \int_{A} \omega \cdot dA \Rightarrow 2 \cdot \delta \cdot \int_{L/2} \omega \cdot ds = 2 \cdot S_{11},$$

$$S_{C} = S_{2} \Rightarrow 0;$$

$$S_{1} = \delta \cdot \left(\frac{\omega_{1} \cdot 2b}{2}\right) \Rightarrow \delta \cdot h^{3} \cdot (2 \cdot \psi^{2});$$

$$S_{11} = S_1 + \delta \cdot \frac{\omega_{11} + \omega_1}{2} \cdot s \Rightarrow \delta \cdot h^3 \cdot \left(2 \cdot \psi^2 + \frac{4 + \varepsilon}{2} \cdot \psi \cdot \varepsilon \right). \tag{9}$$

Постоянная D, определяющая главную начальную точку отсчета M_0 , m.e. s_0- расстояние от m. 2 до точки, где $\overline{\omega}=0$:

$$D = \frac{S}{\int_A dA} \Rightarrow \frac{S_{11}}{\delta \cdot L/2} \Rightarrow h^2 \cdot \frac{2 \cdot \psi^2 + \frac{4 + \varepsilon}{2} \cdot \psi \cdot \varepsilon}{l + 2 \cdot \psi + \varepsilon}; \tag{10}$$

$$s_0 = 2b \cdot \frac{D}{\omega_1} \Rightarrow 2b \cdot \frac{\psi + \varepsilon + \left(\frac{\varepsilon}{2}\right)^2}{l + 2 \cdot \psi + \varepsilon}.$$
 (11)

Главные секториальные координаты $\overline{\omega} = \omega - D$:

$$\overline{\omega}_{\mathcal{C}} = \overline{\omega}_2 \Rightarrow h^2 \cdot \left(-\frac{D}{h^2}\right);$$
 (12)

$$\overline{\omega}_1 \Rightarrow h^2 \cdot \left(2 \cdot \psi - \frac{D}{h^2}\right);$$
 (13)

$$\overline{\omega}_{11} \Rightarrow h^2 \cdot \left((2 + \varepsilon) \cdot \psi - \frac{D}{h^2} \right).$$
 (14)

Библиографический список:

- 1. Волков В.П., Волкова О.В. Определение геометрических характеристик тонкостенного Z-образного стержня [Электронный ресурс] //Моделирование и механика конструкций. 2015. №1. URL: http://mechanics.pguas.ru/Plone/nomera-zhurnala/no1/stroitelnaya-mechanika/opredelenie-geometricheskih-harakteristik-tonkostennogo-z-obraznogo-sterzhnya/at_download/file (дата обращения: 07.11.2015).
- 2. Волков В.П., Волкова О.В., Земцова О.Г. Геометрические характеристики тонкостенного Z-образного стержня без закругления // Эффективные строительные конструкции: теория и практика: Сборник статей XV Международной научно-технической конференции. Пенза, 2015. С. 42-46.
- 3. Волков O.B. В.П., Волкова Геометрические характеристики тонкостенного Z-образного стержня с закруглением [Электронный ресурс] // **№**2. URL: Моделирование конструкций. 2015. И механика http://mechanics.pguas.ru/Plone/nomera-zhurnala/no1/stroitelnayamechanika/opredelenie-geometricheskih-harakteristik-tonkostennogo-z-obraznogosterzhnya/at_download/file (дата обращения: 07.11.2015).

4. Александров А.В., Потапов В.Д., Державин Б.П. Сопротивление материалов: Учеб. для вузов. М: Высш. шк., 1995. 560 с.; ил.