МЕТОД УСИЛЕНИЯ ПОДКРАНОВЫХ БАЛОК

Нежданов Кирилл Константинович,

Пензенский государственный университет архитектуры и строительства, г.Пенза,

доктор технических наук, профессор кафедры «Строительные конструкции».

Гарькин Игорь Николаевич,

Пензенский государственный университет архитектуры и строительства, г.Пенза,

старший преподаватель кафедры «Управление качеством и технология строительного производства».

Аннотация

Статья посвящена методу усилению металлических подкрановых балок двутаврового профиля. Актуальность рассматриваемого решения многократно возрастает в связи со стремительным старением промышленного фонда зданий цехов использующие мостовые краны. На данный метод был получен патент РФ.

Ключевые слова: подкрановая балка, усталостные трещины, динамические воздействия, восстановление работоспособности, усиление.

METHOD OF STRENGTHENING OF CRANE BEAMS

Nezhdanov Kirill Konstantinovich,

Penza State University of Architecture and Construction, Penza,

Doctor of Sciences, Professor of the department "Building constructions".

Garkin Igor Nikolaevich,

Penza State University of Architecture and Construction, Penza,

Senior Lecturer of the department "Quality management and construction technologies".

Abstract

The article is devoted to the method of strengthening a metal crane beams the I-beam. The relevance of the solution increases dramatically due to the rapid aging industrial building stock shops using overhead cranes. This method has been patented in the Russian Federation.

Keywords: crane girder, fatigue crack, dynamic effects, recovery, strengthening

Ветшание промышленного фонда зданий цехов цветной и чёрной металлургии негативно сказывается на безопасности строительных конструкций и как следствие может привести к аварии и гибели людей. Особенно тревожная ситуация возникла с подкрановыми балками (составляют до 20% всего металлического каркаса здания). В ходе их эксплуатации в них возникают усталостные трещины от динамических воздействий мостовых кранов. По существующим нормам эксплуатация металлически конструкций с трещинами запрещена. Несмотря на ряд разработок, и предложений по снижению воздействий негативных воздействий на подкрановые конструкции [1], большинство подкрановых балок на предприятиях металлургической промышленности были смонтированы в 60-70-х годах прошлого века, а значит, накопили огромное количество циклов. Авторы полагают (опираясь на многочисленные экспериментальные и теоретические исследования [2-4]), что в ближайшие несколько лет крупная авария неизбежна. В связи с этим в настоящей статье предлагается метод по усилению подкрановых балок. На данный метод был получен патент РФ [5].

Предложенный метод относится к области строительства и может быть использован при реконструкции подкрановых путей. На подкрановую балку установлен соосно рельс и элементы усиления. Элементы усиления выполнены из неравнобоких уголков и двух швеллеров. Швеллеры установлены симметрично относительно рельса на верхний пояс подкрановой балки и присоединены к нему полками наружу. Неравнобокие уголки расположены симметрично относительно шейки рельса большими уголками наружу, причем

последние оперты на верхние полки швеллеров и соединены с ними. Другие полки уголков соединены с шейкой рельса.

Метод может быть применён при реконструкции подкрановых путей преимущественно с тяжелым режимом работы кранов. В таких конструкциях при интенсивной эксплуатации возникают усталостные разрушения, выводящие их из строя.

Усиление подкрановых балок рекомендовано производить приваркой к верхнему поясу снизу вертикальных и наклонных листов, поддерживающих верхний пояс и уменьшающих локальные напряжения в стенке балки $\sigma_{_{y}}$ при центральном действии сосредоточенной силы P и локальных напряжений $\sigma_{_{ykp}}$, возникающих от локальных крутящих моментов $M_{_{kp}}$.

Цель разработки – повышение несущей способности и выносливости подкрановых конструкций.

Верхний пояс подкрановой балки установлен симметрично относительно рельса и соединён с ним в два усиливающих швеллера, ориентированных полками наружу, а с шейкой рельса симметрично относительно нее соединены неравнобокие усиливающие уголки большими полками наружу, причем последние опираются на верхние полки швеллеров и соединены с ними.

Верхний пояс балки, усиливающие швеллеры и уголки образуют замкнутый контур, разделенный стенкой рельса на два отсека. Этот контур обладает во много раз большим моментом инерции при изгибе и при кручении, чем не соединенные вместе пояс балки и рельс. За счет этого повышается выносливость усиленной балки.

Усиливающие элементы соединяют рельс и балку в одно целое, поэтому суммарный момент инерции всего сечения усиленной балки также резко возрастает и за счет этого соответственно повышается несущая способность всего сечения.

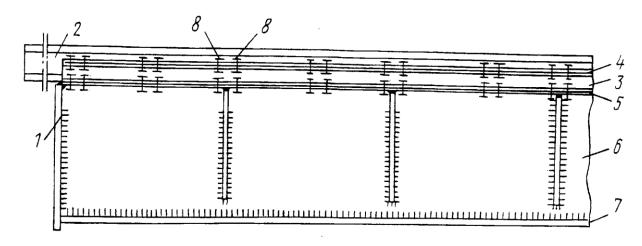


Рисунок 1 – Общий вид усиленной подкрановой конструкции

Усиленная подкрановая конструкция (рисунок 1) содержит подкрановую балку 1, установленный на ней соосно рельс 2 и усиливающие швеллеры 3 и уголки 4. Балка 1 содержит верхний пояс 5, стенку 6 и нижний пояс 7. В соединениях элементов друг с другом применены фрикционы шпильки 8.

Усиление подкрановой конструкции производится в следующей последовательности.

шаблону Отверстия деталях продавливают пуансоном ПО рассверливают на необходимый диаметр. Первоначально к шейке рельса 2 присоединяют высокопрочными шпильками 8 неравнобокие уголки 4, ориентируя их большими полками наружу. Затем на усиленном участке рельсового пути снимают рельсовые крепления и, используя существующие отверстия в верхнем поясе, присоединяют к последнему швеллеры 3, ориентируя их полками наружу. Затем снимают старые рельсы и заменяют их усиливающими уголками 4 усиливающими новыми c швеллерами фрикционными шпильками 8, используя пневмогайковерты.

Таким образом, в результате усиления подкрановой конструкции резко возрастают суммарный момент инерции усиленной балки, т.к. рельс 2, усиливающие уголки 4 и усиливающие швеллеры 3 включены в работу всего сечения и за счет этого в 1,8 раза повышена несущая способность подкрановой конструкции и даётся возможность увеличения грузоподъемности крана в 2,5 раза. Одновременно рельс 2, усиливающие уголки 4 и швеллеры 3совместно с

верхним поясом подкрановой балки 1 образуют мощный замкнутый контур, обладающий во много раз большими моментами инерции при изгибе (в 3,42 раза) и при кручении (в 4 раза), чем верхний пояс и рельс усиленной балки 1.

В результате этого соответственно снижены σ_y и σ_{ykp} и их силы $\sum \sigma_y$ и соответственно повышена выносливость подкрановой конструкции.

Такое резкое повышение выносливости и несущей способности произошло при увеличении расхода металла всего на 9,7%.

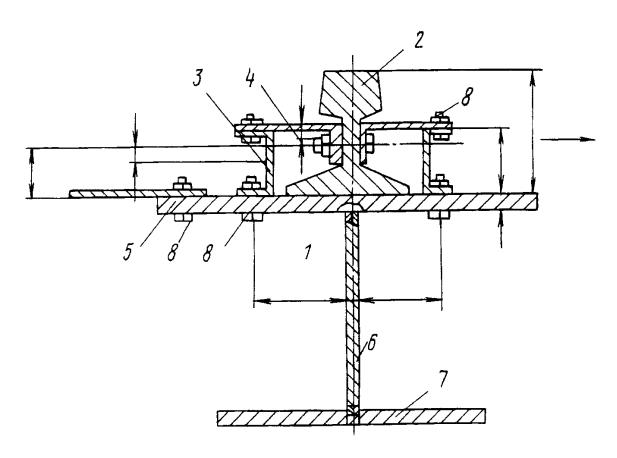


Рисунок 2 – Поперечное сечение усиленной подкрановой конструкции

Таким образом, затрачивая незначительные средства на усиление повреждённых подкрановых балок, мы имеем возможность обеспечить на должном уровне безопасность строительных конструкций и предотвратить возможные материальные потери и человеческие жертвы.

Библиографический список:

- 1. Нежданов К.Н., Кузьмишкин А.А., Гарькин И.Н. Предотвращение усталостных трещин в узле соединения рельса с подкрановой балкой // Современные проблемы науки и образования. 2015. № 1. URL: http://www.science-education.ru/121-18215 (дата обращения: 01.04.2015).
- 2. Нежданов К.К., Кузьмишкин А.А., Гарькин И.Н. Эффективная металлическая подкрановая конструкция // Современные проблемы науки и образования. 2015. № 1. URL: http://www.science-education.ru/121-19350 (дата обращения: 27.05.2015).
- 3. Нежданов К.К., Железняков Л.А., Гарькин И.Н. Эффективный способ проката уголкового профиля // Строительная механика и расчёт сооружений. М., 2014. №1. С. 71-75.
- 4. Нежданов К.К., Лаштанкин А.С., Гарькин И.Н Сборные подкрановые балки из прокатных профилей // Строительная механика и расчёт сооружений. М., 2013. №3. С. 69-75.
- 5. Нежданов К.К., Нежданов А.К. Устройство Неждановых для усиления подкрановых конструкций // Патент РФ 2067646 от 10.10.1996г.