ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТОНКОСТЕННОГО Z-ОБРАЗНОГО СТЕРЖНЯ С ЗАКРУГЛЕНИЕМ ДЛЯ РАСЧЕТА НА ИЗГИБ С КРУЧЕНИЕМ

Волков Владимир Павлович,

Пензенский государственный университет архитектуры и строительства, г. Пенза, кандидат технических наук, доцент кафедры «Механика».

Волкова Ольга Владимировна,

Пензенский государственный университет архитектуры и строительства, г. Пенза, аспирант.

Аннотация

Статья посвящена определению геометрических характеристик гнутого тонкостенного стержня Z-образного профиля с учетом закругления, при расчете его на растяжение, изгиб, стесненное кручение. Исследована зависимость между относительными геометрическими размерами Z-образного профиля и углом наклона стенки, при которой декартовые оси *XY* являются главными центральными осями и приведена таблица соответствующих значений. Приведены расчетные формулы для определения относительных значений длины контура, главных осевых и секториального моментов инерции.

Ключевые слова: гнутый тонкостенный стержень, Z-образный профиль, главные центральные оси сечения, осевые и секториальный моменты инерции.

GEOMETRIC CHARACTERITICS THIN-WALLED

Z-SHAPED ROD WITH ANY CURVING FOR CURVE WITH ROTATION Volkov Vladimir Pavlovich,

Penza State University of Architecture and Construction, Penza, Candidate of Sciences, Associate Professor of the department "Mechanics".

Volkova Olga Vladimirovna,

Penza State University of Architecture and Construction, Penza, Postgraduate.

Abstract

Article is devoted to definition of the geometric characteristics of a buckler thin-walled rod Z-shaped profile with any curving for tension, curve, restricting rotation. The paper studies the relationship between relative geometrical dimensions of Z-shaped profile and angle of incline wall, when axes *XY* is the main central axes section, and table of this values. To deduce a formula of calculation dimensions length of contours, main axes and sector moments of inertia.

Keywords: buckler thin-walled rod, Z-shaped profile, the main central axes section, axes and sector moments of inertia.

Условные обозначения: XY – главные центральные оси сечения; B=2b – габаритная ширина профиля сечения; H=2h – габаритная высота срединной линии профиля сечения; L – полная длина срединной линии профиля сечения; r – радиус закругления срединной линии профиля сечения.

Рисунок 1 – Z-образный профиль без закруглений

Относительные геометрические размеры тонкостенного Z-образного сечения постоянной толщины δ без учета закругления (рисунок 1)

определяются из [1]:

$$\frac{B}{H} \Rightarrow \frac{1}{\tan \gamma} \cdot \sqrt{1 + \frac{2}{3\cos \gamma}}; \ \frac{L}{H} \Rightarrow \frac{B}{H} + \frac{1 + \cos \gamma}{\sin \gamma};$$

Рассматривается задача определения геометрических размеров гнутого тонкостенного стержня Z-образного сечения постоянной толщины δ с учетом закругления r (рисунок 2), при которых оси XY являются главными центральными осями, т.е. дано: $H, 0 < \gamma < \frac{\pi}{2}, 0 \le r \le R_{max}$; найти: B, если XY – главные центральные оси сечения.

Учитывая центральную симметрию, рассмотрим верхнюю половину сечения с закруглениями (рисунок 2).

Рисунок 2 – Верхняя половина Z-образного поперечного сечения с закруглениями

$$R_{max} \Rightarrow h \cdot \frac{\tan\left(\frac{\gamma}{2}\right)}{\tan\gamma}.$$

Декартовые координаты *x*, *y* характерных точек и длины соответствующих участков *l* (рисунок 2):

$$\begin{aligned} x_{11} &= -b; & y_{11} = h; & l_{11} = b; \\ x_{21} &= \frac{h}{\tan \gamma} - \frac{r}{\tan(\gamma/2)}; & y_{21} = h; & l_{21} = \frac{h}{\tan \gamma} - \frac{r}{\tan(\gamma/2)}; \\ x_{22} &= \frac{h}{\tan \gamma} - \frac{r \cdot \cos \gamma}{\tan(\gamma/2)}; & y_{22} = h - \frac{r \cdot \sin \gamma}{\tan(\gamma/2)}; & l_{22} = \frac{h}{\sin \gamma} - \frac{r}{\tan(\gamma/2)}. \end{aligned}$$

Центральные оси ХҮ (рисунок 2) являются главными [3], если

c

$$I_{XY} = \int_{L_{2}} \delta(s) \cdot x(s) \cdot y(s) \cdot ds \Rightarrow 0,$$

$$\frac{l_{11}^{2} \cdot y_{21}}{2} = \frac{l_{21}^{2} \cdot y_{21}}{2} + \frac{l_{22} \cdot x_{22} \cdot y_{22}}{3} + \int_{0}^{\pi - \gamma} (x_{21} + r \cdot \sin \alpha) \cdot (y_{21} - r \cdot (1 - \cos \alpha)) \cdot r \cdot d\alpha,$$

$$\frac{b^{2} \cdot h}{2} = \frac{l_{21}^{2} \cdot h}{2} + \frac{l_{22} \cdot x_{22} \cdot y_{22}}{3} + r \cdot \left[\left(x_{21} \cdot (\pi - \gamma) + r \cdot (1 + \cos \gamma) \right) \cdot (h - r) + \left(x_{21} + \frac{r \cdot \sin \gamma}{2} \right) \cdot r \cdot \sin \gamma \right],$$
The $\beta = \pi - \gamma$

где $\beta = \pi - \gamma$.

Введем обозначения:

$$\psi = \frac{B}{H} \Rightarrow \frac{b}{h}; \qquad \varepsilon = \frac{r}{R_{max}} \Rightarrow \frac{r}{h} \cdot \frac{\tan \gamma}{\tan(\gamma/2)}, \qquad 0 \le \varepsilon \le 1; \qquad r_h = \frac{r}{h} \Rightarrow \frac{\varepsilon \cdot \tan(\gamma/2)}{\tan \gamma}$$

Относительные декартовые координаты x_i^h , y_i^h характерных точек и длины соответствующих участков l_i^h :

$$\begin{aligned} x_{11}^{h} &= \frac{x_{11}}{h} \Rightarrow \psi; \\ x_{21}^{h} &= \frac{x_{21}}{h} \Rightarrow \frac{1-\varepsilon}{\tan\gamma}; \\ x_{22}^{h} &= \frac{x_{22}}{h} \Rightarrow \frac{1-\varepsilon \cos\gamma}{\tan\gamma}; \end{aligned} \qquad y_{21}^{h} &= \frac{y_{21}}{h} \Rightarrow 1; \\ y_{21}^{h} &= \frac{y_{21}}{h} \Rightarrow 1; \\ y_{22}^{h} &= \frac{y_{22}}{h} \Rightarrow 1-\varepsilon \cos\gamma; \end{aligned} \qquad l_{22}^{h} &= \frac{l_{22}}{h} \Rightarrow \frac{1-\varepsilon \cos\gamma}{\sin\gamma}. \end{aligned}$$

Тогда зависимость между ψ , γ и ε для тонкостенного Z-образного сечения постоянной толщины δ с учетом закругления относительно главных центральных осей ХҮ (рисунок 2) определяются из решения уравнения [2]

$$(\psi)^2 = (l_{21}^h)^2 + \frac{2}{3} \cdot l_{22}^h \cdot x_{22}^h \cdot y_{22}^h +$$

$$+2\cdot r_h \cdot \left[\left(x_{21}^h \cdot \beta + r_h \cdot (1 + \cos \gamma) \right) \cdot (1 - r_h) + \left(x_{21}^h + \frac{r_h \cdot \sin \gamma}{2} \right) \cdot r_h \cdot \sin \gamma \right].$$
(1)

Зависимость между ψ , γ и ε из уравнения (1) приведена в таблице 1.

ү, рад	$\varepsilon = 0$	$\varepsilon = 0.25$	$\varepsilon = 0.5$	$\varepsilon = 0.75$	$\varepsilon = 1$
1,3467	0,455842	0,439015	0,42092	0,40157	0,381
1,31396	0,5	0,47886	0,45616	0,43193	0,40619
1,29134	0,530458	0,50604	0,47988	0,45198	0,42239
1,25967	0,57324	0,54386	0,51245	0,47901	0,44358
1,229	0,615	0,58042	0,54346	0,5042	0,46266
1,1864	0,6742	0,63146	0,58601	0,53787	0,48705
1,1267	0,76	0,70425	0,64526	0,58307	0,51763
1,09601	0,805905	0,74259	0,67583	0,60563	0,53189
π/3	0,881919	0,80532	0,72497	0,64084	0,55277
0,976632	1	0,90103	0,79804	0,69093	0,57941
0,910139	1,12256	0,99846	0,87038	0,7381	0,60113
0,826579	1,29712	1,1345	0,96856	0,79879	0,62436
π/4	1,39384	1,2089	1,021	0,829893	0,63433
0,5915	1,999	1,6623	1,3296	1	0,67024

Таблица 1 – Зависимости между геометрическими характеристиками

Примечание: При промежуточных значениях γ и ε величина $\psi = \frac{B}{H}$ определяется по линейной интерполяции.

Относительная длина контура гнутого Z-образного профиля [2]:

$$\frac{L}{H} = \frac{L_{2}}{h} \Rightarrow l_{11}^{h} + l_{21}^{h} + l_{22}^{h} + r_{h} \cdot \beta.$$
(2)

Главные осевые моменты инерции определяются по формулам [2]:

$$\begin{split} I_X &= \int_A \ y^2(s) \cdot dA \Rightarrow 2 \cdot \delta \cdot \int_{L_2} y^2(s) \cdot ds \Rightarrow \\ \Rightarrow 2 \cdot \delta \cdot \left\{ (l_{11} + l_{21}) \cdot h^2 + \frac{1}{3} \cdot l_{22} \cdot y_{22}^2 + \int_0^\beta (y_{21} - r \cdot (1 - \cos \alpha))^2 \cdot r \cdot d\alpha \right\}, \\ I_X \cdot \frac{1}{2 \cdot \delta \cdot h^3} \Rightarrow \left(\psi + \frac{1 - \varepsilon}{\tan \gamma} \right) + \frac{(1 - \varepsilon \cdot \cos \gamma)^3}{3 \cdot \sin \gamma} + \frac{\varepsilon \cdot \tan(\gamma/2)}{\tan \gamma} \cdot \left[\left(1 - \frac{\varepsilon \cdot \tan(\gamma/2)}{\tan \gamma} \right)^2 \cdot \beta + 1 \right] + \frac{(1 - \varepsilon \cdot \cos \gamma)^3}{3 \cdot \sin \gamma} + \frac{\varepsilon \cdot \tan(\gamma/2)}{\tan \gamma} \cdot \left[\left(1 - \frac{\varepsilon \cdot \tan(\gamma/2)}{\tan \gamma} \right)^2 \cdot \beta + 1 \right] + \frac{(1 - \varepsilon \cdot \cos \gamma)^3}{3 \cdot \sin \gamma} + \frac{\varepsilon \cdot \tan(\gamma/2)}{\tan \gamma} \cdot \left[\left(1 - \frac{\varepsilon \cdot \tan(\gamma/2)}{\tan \gamma} \right)^2 \cdot \beta + 1 \right] + \frac{(1 - \varepsilon \cdot \cos \gamma)^3}{3 \cdot \sin \gamma} + \frac{\varepsilon \cdot \tan(\gamma/2)}{\tan \gamma} \cdot \left[\left(1 - \frac{\varepsilon \cdot \tan(\gamma/2)}{\tan \gamma} \right)^2 \cdot \beta + 1 \right] + \frac{(1 - \varepsilon \cdot \cos \gamma)^3}{3 \cdot \sin \gamma} + \frac{\varepsilon \cdot \tan(\gamma/2)}{\tan \gamma} \cdot \left[\left(1 - \frac{\varepsilon \cdot \tan(\gamma/2)}{\tan \gamma} \right)^2 \cdot \beta + 1 \right] + \frac{1 - \varepsilon \cdot \cos \gamma}{3 \cdot \sin \gamma} + \frac{\varepsilon \cdot \tan(\gamma/2)}{3 \cdot \sin \gamma} + \frac{\varepsilon \cdot \tan(\gamma/2)}{1 \cdot \tan \gamma} + \frac{\varepsilon \cdot \tan(\gamma/2)}{1 \cdot \tan \gamma} \right] + \frac{\varepsilon \cdot \tan(\gamma/2)}{1 \cdot \tan \gamma} + \frac{\varepsilon \cdot \tan(\gamma/2)}{1 \cdot \tan$$

$$\left(1 - \frac{\varepsilon \cdot \tan(\gamma/2)}{\tan \gamma}\right) \cdot \frac{\varepsilon \cdot \tan(\gamma/2)}{\tan \gamma} \cdot \sin \gamma + \left(\frac{\varepsilon \cdot \tan(\gamma/2)}{\tan \gamma}\right)^2 \cdot \frac{\beta - \sin \gamma \cdot \cos \gamma}{2} \right];$$
(3)

$$I_Y = \int_A x^2(s) \cdot dA \Rightarrow 2 \cdot \delta \cdot \int_{L/2} x^2(s) \cdot ds \Rightarrow$$

$$\Rightarrow 2 \cdot \delta \cdot \left\{\frac{l_{11} \cdot x_{11}^2}{3} + \frac{l_{21} \cdot x_{21}^2}{3} + \frac{l_{22} \cdot x_{22}^2}{3} + \int_0^\beta (x_{21} + r \cdot \sin \alpha)^2 \cdot r \cdot d\alpha \right\},$$

$$I_y \cdot \frac{1}{2 \cdot \delta \cdot h^3} \Rightarrow \frac{\psi^3}{3} + \left(\frac{1 - \varepsilon}{\tan \gamma}\right)^3 \cdot \frac{1}{3} + \frac{(1 - \varepsilon \cdot \cos \gamma)^3}{3 \cdot \sin \gamma \cdot \tan^2 \gamma} + \frac{\varepsilon \cdot \tan(\gamma/2)}{\tan \gamma} \cdot \left[\left(\frac{1 - \varepsilon}{\tan \gamma}\right)^2 \cdot \beta + \right]$$

$$+ 2 \cdot \frac{1 - \varepsilon}{\tan \gamma} \cdot \frac{\varepsilon \cdot \tan(\gamma/2)}{\tan \gamma} \cdot (1 + \cos \gamma) + \left(\frac{\varepsilon \cdot \tan(\gamma/2)}{\tan \gamma}\right)^2 \cdot \frac{\beta + \sin \gamma \cdot \cos \gamma}{2} \right].$$

$$(4)$$

Для нахождения главного секториального момента инерции I_{ω} введем секториальные координаты ω (удвоенная площадь сектора, где полюс и начальная точка отсчета выбраны в точке *C*, рисунок 3а):

$$\omega_{c} = \omega_{22} \Rightarrow 0;$$

$$\omega(s) \Rightarrow r^{2} \cdot (\alpha - \sin \alpha) + l_{22} \cdot r \cdot (1 - \cos \alpha), \quad 0 \le \alpha \le \beta,$$

$$\omega_{21} = (l_{22} + \beta \cdot r + l_{21}) \cdot r \Rightarrow h^{2} \cdot \left(\left(l_{22}^{h} + \beta \cdot r_{h} + l_{21}^{h} \right) \cdot r_{h} \right); \quad (5)$$

$$\omega_{11} = \omega_{21} + (l_{21} + l_{11}) \cdot h \Rightarrow h^{2} \cdot \left(\frac{\omega_{21}}{h^{2}} + \left(l_{21}^{h} + l_{11}^{h} \right) \right) \Rightarrow$$

$$\Rightarrow h^{2} \cdot \left(\left(l_{22}^{h} + \beta \cdot r_{h} + l_{21}^{h} \right) \cdot r_{h} + \left(l_{21}^{h} + l_{11}^{h} \right) \right). \quad (6)$$

Секториальный статический момент:

$$S = \int_{A} \omega \cdot dA \Rightarrow 2 \cdot \delta \cdot \int_{L/2} \omega \cdot ds = 2 \cdot S_{11},$$

$$S_{C} = S_{22} \Rightarrow 0;$$

$$S_{21} = \delta \cdot \left(l_{22} \cdot \beta + \frac{\beta^{2}}{2} \cdot r - h\right) \cdot r^{2} \Rightarrow \delta \cdot h^{3} \cdot \left(l_{22}^{h} \cdot \beta + \frac{\beta^{2}}{2} \cdot r_{h} - 1\right) \cdot (r_{h})^{2};$$

$$S_{11} = S_{21} + \delta \cdot \frac{\omega_{11} + \omega_{21}}{2} \cdot (l_{21} + l_{11}) \Rightarrow$$

$$\Rightarrow \delta \cdot h^{3} \cdot \left(\left(l_{22}^{h} \cdot \beta + \frac{\beta^{2}}{2} \cdot r_{h} - 1\right) \cdot (r_{h})^{2} + \frac{\omega_{11} + \omega_{21}}{h^{2}} \cdot \frac{(l_{21}^{h} + l_{11}^{h})}{2}\right).$$
(7)

Постоянная *D*, определяющая главную начальную точку отсчета M_0 (рисунок 3б):

$$D = \frac{S}{\int_{A} dA} \Rightarrow \frac{S_{11}}{\delta \cdot L/2} \Rightarrow h^{2} \cdot \frac{\left(l_{22}^{h} \cdot \beta + \frac{\beta^{2}}{2} \cdot r_{h} - 1\right) \cdot (r_{h})^{2} + \left(\left(l_{22}^{h} + \beta \cdot r_{h} + x_{21}^{h}\right) \cdot r_{h} + \frac{x_{21}^{h} + \psi}{2}\right) \cdot (x_{21}^{h} + \psi)}{l_{11}^{h} + l_{21}^{h} + l_{22}^{h} + r_{h} \cdot \beta}; \quad (8)$$

$$s_0 = h \cdot \frac{\omega_{11} - D}{\omega_{11} - \omega_{21}} \cdot \left(l_{11}^h + l_{21}^h \right). \tag{9}$$

Рисунок 3 – Эпюры секториальных ω и главных секториальных координат $\overline{\omega} = \omega - D$

Главный секториальный момент инерции:

$$\begin{split} I_{\omega} &= \int_{A} \overline{\omega}^{2} \cdot dA \Rightarrow \int_{A} \left(\omega^{2} - 2 \cdot \omega \cdot D + D^{2} \right) \cdot dA \Rightarrow \\ &\Rightarrow \int_{A} \omega^{2} \cdot dA - 4 \cdot D \cdot S_{11} + D^{2} \cdot \delta \cdot L \Rightarrow 2 \cdot \delta \cdot \int_{L/2} \omega^{2} \cdot ds - 4 \cdot \frac{S_{11}^{2}}{\delta \cdot L} \Rightarrow \\ &\Rightarrow 2 \cdot \delta \cdot \left[\frac{(l_{11} + l_{21}) \cdot (\omega_{11}^{2} + \omega_{21}^{2} + \omega_{11} \cdot \omega_{21})}{3} + \right. \\ &+ 2 \cdot r^{3} \cdot l_{22}^{2} \cdot (3 \cdot \beta - 4 \cdot \sin \beta + \sin \beta \cdot \cos \beta) + r^{4} \cdot l_{22} \cdot (\beta - \sin \beta)^{2} + \\ &+ r^{5} \cdot \left(\frac{\beta^{3}}{3} - 2 \cdot (\sin \beta - \beta \cdot \cos \beta) + \frac{\beta - \sin \beta \cdot \cos \beta}{2} \right) \right] - 4 \cdot \frac{S_{11}^{2}}{\delta \cdot L}, \\ &I_{\omega} \cdot \frac{1}{2 \cdot \delta \cdot h^{5}} \Rightarrow \frac{(l_{11}^{h} + l_{21}^{h}) \cdot \left(\left(\frac{\omega_{11}}{h^{2}} \right)^{2} + \left(\frac{\omega_{21}}{h^{2}} \right)^{2} + \left(\frac{\omega_{11}}{h^{2}} \right) \cdot \left(\frac{\omega_{21}}{h^{2}} \right) \right)}{3} + \\ &+ 2 \cdot r_{h}^{3} \cdot \left(l_{22}^{h} \right)^{2} \cdot (3 \cdot \beta - 4 \cdot \sin \beta + \sin \beta \cdot \cos \beta) + r_{h}^{4} \cdot l_{22}^{h} \cdot (\beta - \sin \beta)^{2} + \\ & \left. \left. \left(\frac{\beta^{3}}{h^{2}} \right)^{2} \cdot \left(3 \cdot \beta - 4 \cdot \sin \beta + \sin \beta \cdot \cos \beta \right) + r_{h}^{4} \cdot l_{22}^{h} \cdot \left(\beta - \sin \beta \right)^{2} + \right. \right) \right] \right\} \\ & \left. \left. \left(\frac{\beta^{3}}{h^{2}} \right)^{2} \cdot \left(3 \cdot \beta - 4 \cdot \sin \beta + \sin \beta \cdot \cos \beta \right) + r_{h}^{4} \cdot l_{22}^{h} \cdot \left(\beta - \sin \beta \right)^{2} + \right) \right] \right\} \\ & \left. \left(\frac{\beta^{3}}{h^{2}} \right)^{2} \cdot \left(\frac{\beta^{3}}{h^{2}} \right)^{2} \cdot \left(\frac{\beta^{3}}{h^{2}} \right)^{2} + \left(\frac{\beta^{3}}{h^{2}} \right)^{2} + \left(\frac{\beta^{3}}{h^{2}} \right)^{2} \right) \right] \right\} \\ & \left. \left(\frac{\beta^{3}}{h^{2}} \right)^{2} \cdot \left(\frac{\beta^{3}}{h^{2}} \right)^{2} \cdot \left(\frac{\beta^{3}}{h^{2}} \right) \right) \right] \right\} \\ & \left. \left(\frac{\beta^{3}}{h^{2}} \right)^{2} \cdot \left(\frac{\beta^{3}}{h^{2}} \right)^{2} + \left(\frac{\beta^{3}}{h^{2}} \right)^{2} + \left(\frac{\beta^{3}}{h^{2}} \right)^{2} \cdot \left(\frac{\beta^{3}}{h^{2}} \right)^{2} \right) \right] \right)$$

$$+r_h^5 \cdot \left(\frac{\beta^3}{3} - 2 \cdot (\sin\beta - \beta \cdot \cos\beta) + \frac{\beta - \sin\beta \cdot \cos\beta}{2}\right) - \frac{\binom{3^{11}}{\delta \cdot h^3}}{\binom{L}{H}}.$$
 (10)

В общем случае нагружения тонкостенного Z-образного стержня нормальные напряжения будут определяться по принципу суперпозиции по

формуле [3]:

$$\sigma = \frac{N}{A} + \frac{M_x}{I_x} \cdot y + \frac{M_y}{I_y} \cdot x + \frac{B_\omega}{I_\omega} \cdot \overline{\omega}.$$

Библиографический список:

1. Волков В.П., Волкова О.В. Определение геометрических характеристик тонкостенного Z-образного стержня [Электронный ресурс] // Моделирование и механика конструкций. 2015. №1. URL: <u>http://mechanics.pguas.ru/Plone/nomera-zhurnala/no1/stroitelnaya-mechanika/opredelenie-geometricheskih-harakteristik-tonkostennogo-z-obraznogo-sterzhnya/at_download/file</u> (дата обращения:

07.11.2015).

2. Волков В.П., Волкова О.В. Геометрические характеристики тонкостенного Z-образного стержня с закруглением [Электронный ресурс] //Моделирование и механика конструкций. 2015. №2. URL: <u>http://mechanics.pguas.ru/Plone/nomera-zhurnala/no1/stroitelnaya-</u>

mechanika/opredelenie-geometricheskih-harakteristik-tonkostennogo-z-obraznogosterzhnya/at_download/file (дата обращения: 07.11.2015).

3. Александров А.В., Потапов В.Д., Державин Б.П. Сопротивление материалов: Учеб. для вузов. М.: Высш. шк., 1995. 560 с.