РАСЧЕТ СТЕРЖНЕВЫХ СИСТЕМ

С ИСПОЛЬЗОВАНИЕМ ТЕОРИИ ГРАФОВ В СРЕДЕ «MATLAB»

Монахов Владимир Андреевич,

Пензенский государственный университет архитектуры и строительства, г. Пенза,

доктор технических наук, профессор кафедры «Механика».

Зайцев Михаил Борисович,

Пензенский государственный университет архитектуры и строительства, г. Пенза,

кандидат технических наук, доцент кафедры «Механика».

Аннотация

Представлена методика определения усилий в стержневых системах на основе понятий теории графов. Разработано программное средство с использованием этой методики.

Ключевые слова: стержневая система, граф стержневой системы, матрица инцидентности, внутренние усилия

CALCULATION OF ROD SYSTEMS WITH THE USE OF GRAPH THEORY IN THE ENVIRONMENT OF "MATLAB"

Monakhov Vladimir Andreevich,

Penza State University of Architecture and Construction, Penza,

Doctor of Sciences, Professor of the department "Mechanics".

Zaytsev Mihail Borisovich,

Penza State University of Architecture and Construction, Penza,

Candidate of Sciences, Associate Professor of the department "Mechanics".

Abstract

The method of definition of efforts in core systems based on concepts of graph theory. Developed software tool using this technique.

Keywords: core system, core count system, a matrix of incidence, an internal effort.

Любую стержневую систему можно представить в виде ориентированного графа [1], вершины которого инициируются с узлами, а ребра — с элементами (стержнями) системы. Используя матрицу инцидентности графа, поставим задачу определения усилий в элементах конструкций с применением матричных операторов системы «МatLab».

Принимая внутренние усилия S в стержнях системы в качестве реберных чисел графа, а в качестве узловых — внешнюю нагрузку F, топологическое уравнение для статически определимых систем запишем в виде:

$$A_0^T S^* = F^* \,, \tag{1}$$

где A_0 – матрица инцидентности графа.

Или в развернутом виде для системы с m стержнями и n узлами

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{m1} \\ a_{21} & a_{22} & \dots & a_{m2} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} \begin{bmatrix} S_1^* \\ S_2^* \\ \dots \\ S_m^* \end{bmatrix} = \begin{bmatrix} F_1^* \\ F_2^* \\ \dots \\ F_n^* \end{bmatrix}.$$

Элементы вектор-столбцов S^* и F^* сами являются векторами, представленными своими проекциями на оси глобальной системы координат. Поэтому элементы матрицы A_0 нужно представить в виде квадратных подматриц диагональной структуры, с порядком, равным размерности элементов S^* и F^* . Таким образом получим так называемую расширенную матрицу инцидентности A.

Выразив векторы внутренних усилий и внешних нагрузок в глобальной системе координат через их значения в местных (локальных) осях, получим:

$$S^* = \Theta_S^{-1} S, \ F^* = \Theta_F^{-1} F,$$
 (2)

где $\Theta_{\scriptscriptstyle S}\;$ и $\Theta_{\scriptscriptstyle F}$ – матрицы поворота.

Выражение (1) с учетом (2) представляет собой зависимость для определения усилий в любой статически определимой системе:

$$S = \Lambda F \,, \tag{3}$$

где $\Lambda = \left(A^T \Theta_S^{-1}\right)^{-1} \Theta_F^{-1}$ — матрица влияния внутренних усилий.

В качестве примера приведем расчет фермы, изображенной на рисунке 1.

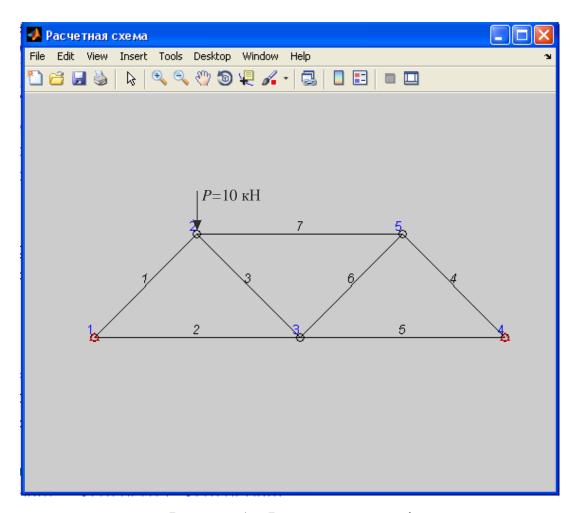


Рисунок 1 – Расчетная схема фермы

Граф данной стержневой системы, полученный при помощи программного средства, разработанного в среде «MatLab», представлен на рисунке 2.

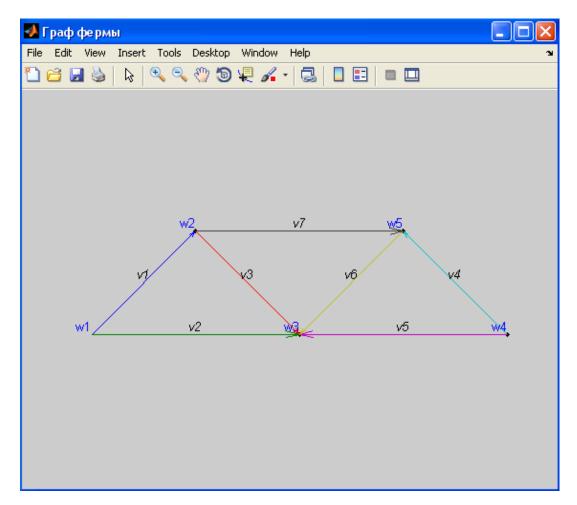


Рисунок 2 – Граф фермы

Задавая внешнюю нагрузку в глобальной системе координат, получим зависимость для определения усилий:

$$S = \left(A^T \Theta_S^{-1}\right)^{-1} F . \tag{4}$$

Для заданной системы матрица инцидентности и расширенная матрица графа имеют вид:

$$A_0 = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & 0 & -1 \end{bmatrix}$$

Элементы матрицы поворота состоят из направляющих косинусов:

$$\phi = K_0 A_0 L^{-1} ,$$

 $K_0 = egin{bmatrix} 0 & 2 & 4 & 8 & 6 \\ 0 & 2 & 0 & 0 & 2 \end{bmatrix}$ — матрица координат узлов в глобальной где

системе координат,

$$L = \begin{bmatrix} 2,82 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2,82 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2,82 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2,82 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 4 \end{bmatrix} - диагональная матрица длин кней.$$

стержней.

Определяем матрицу поворота как

$$\Theta_S^{-1} = \Delta E_S L^{-1} , \qquad (5)$$

где Δ – диагональная матрица разности координат, элементы которой формируются переносом столбцов матрицы $\delta = K_0 A_0^T$ на главную диагональ,

матрица ранжирования.

Вектор узловых нагрузок имеет вид:

Вычеркивая из расширенной матрицы инцидентности A^T строки, соответствующие опорным связям и подставляя (5) в (4) получим

$$S = \begin{bmatrix} S_1 \\ S_2 \\ S_3 \\ S_4 \\ S_5 \\ S_6 \\ S_7 \end{bmatrix} = \begin{bmatrix} -10,61 \\ 7,50 \\ -3,54 \\ -3,54 \\ 2,50 \\ 3,54 \\ -5 \end{bmatrix}.$$

Эпюра продольных сил представлена на рисунке 3.

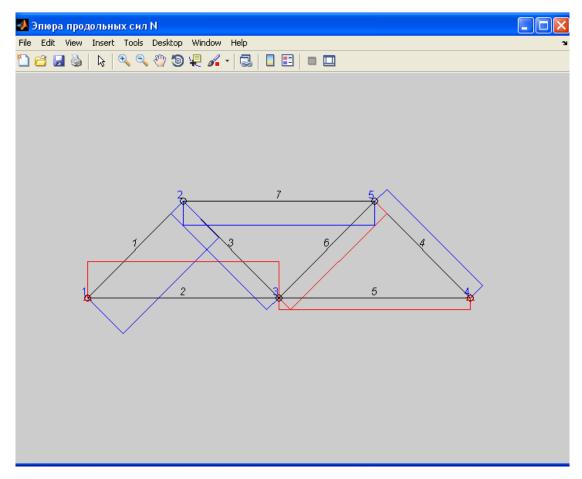


Рисунок 3 – Эпюра продольных сил на экране монитора

Разработано программное средство в среде «MatLab» для расчета стержневых систем на основе методики, использующей понятия теории графов. Данная методика распространяется как на статически определимые, так и статически неопределимые системы.

Библиографический список:

- 1. Оре О. Теория графов. М.: Наука, 1968.
- 2. Монахов В.А., Довженко А.М., Майорова Е.Б. Несущая способность Т-образной рамы [Электронный ресурс] // Моделирование и механика конструкций. 2015. №2. Систем. требования: Adobe Acrobat Reader. URL: http://mechanics.pguas.ru/Plone/nomera-zhurnala/no2/stroitelnaya-mehanika/2.7/at_download/file