СОПРОТИВЛЕНИЕ СЖАТЫХ БЕТОННЫХ ПОЛОС В КОРОТКИХ БАЛКАХ

Лаврова Ольга Владимировна,

Пензенский государственный университет архитектуры и строительства, г.Пенза,

кандидат технических наук, доцент кафедры «Строительные конструкции».

Павлов Павел Вячеславович,

Пензенский государственный университет архитектуры и строительства, г.Пенза,

студент.

Аннотация

В статье рассмотрено построение расчетных моделей сопротивления срезу так называемых коротких балок, имеющих соотношение a/h0 меньше 1,5. Рассмотрен процесс разрушения указанных конструкций и анализ напряженно-деформированного состояния при изменении пролета среза a/h0 от 0,1 до 1,5. Приведены расчетные зависимости для оценки прочности коротких балок.

Ключевые слова: балки с малым пролетом среза, расчет, прочность, наклонная полоса бетона.

RESISTANCE OF COMPRESSED CONCRETE STRIPS IN SHORT BEAMS

Lavrova Olga Vladimirovna,

Penza State University of Architecture and Construction, Penza,
Candidate of Sciences, Associate Professor of the department "Building constructions".

Pavlov Pavel Vjacheslavovish,

Penza State University of Architecture and Construction, Penza, student.

Abstract

The article considers the construction of computational models of shear resistance of so-called short beams having a ratio a/h0 less than 1.5. The process of destruction of these structures and the analysis of the stress-strain state are considered when the a/h0 section span changes from 0.1 to 1.5. The calculated dependences for estimating the strength of short beams are given.

Keywords: beams with a small section span, calculation, strength, inclined strip of concrete.

В настоящее время прочность балок, имеющих пролет срезе менее 1,5 рассчитывается по аналогии с обычными балками. В результате этого их прочность оказывается либо сильно зывышенной, либо заниженной.

Рассмотрим процесс (механику) разрушения бетонной сжатой полосы, определяющей прочность коротких балок, в соответствии с известной моделью КСМ и опытными данными [1]. Бетонная полоса испытывает наклонное сжатие вдоль оси и срез вдоль диагоналей. Процесс разрушения происходит в следующей последовательности. Образуются граничные трещины сдвига полосы относительно окружающего бетона (рис.1,а). Затем происходит увеличение высоты верхнего и нижнего клиньев, формирующихся в зонах смятия бетона (рис.1,б), одновременно с развитием пластических деформаций. При этом боковые поверхности клиньев, сближаясь, образуют Х-образные диагональные плоскости среза сжатой полосы. Поперечные растягивающие усилия распределяются по треугольной эпюре вдоль боковых граней бетонных полос-призм (рис.1,в). В связи с тем, что при дальнейшем росте нагрузки, примерно равной 85% от разрушающего значения, происходит увеличение объема призмы в результате процесса трещинообразования в бетоне полосы (см. рис.1,в), сдерживающее влияние оказывает окружающий бетон. Эпюра бокового сопротивления бетона является зеркальным отражением треугольной эпюры поперечных растягивающих усилий. Сопротивление бетона,

окружающего расчетную полосу-призму, условно назовем эффектом обоймы. В некоторых случаях сопротивление окружающего бетона количественно снижается за счет появления граничных трещин сдвига, которые в дальнейшем не развиваются по ширине.

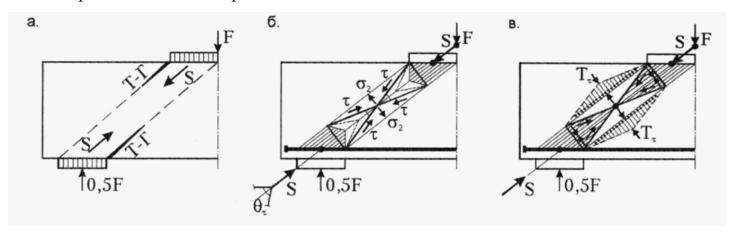


Рисунок 1 — Схема поэтапного сопротивления разрушению сжатой полосы бетона в коротких балках. а — схема образования трещин; б — схема формирования диагональных сечений среза; в — схема сопротивления бетона, окружающего расчетную полосу

Остановим внимание на трех характерных особенностях. Следует объяснить, почему разрушение коротких балок при срезе сжатой полосы происходит по диагональному сечению, соединяющему грани грузовой и опорной площадок, в то время как сопротивление срезу происходит по двум диагональным сечениям. Ответ на этот вопрос очевиден. При моделировании в коротких балках выделяется призма-полоса бетона с равными по длине диагоналями - сечениями среза. Так как в действительности одно из диагональных сечений имеет большую длину среза, форма разрушения коротких балок выглядит как разрушение по сечению с меньшей длиной. Однако совместная работа бетонной полосы по двум диагональным сечениям происходит вплоть до разрушения.

Другой особенностью является несимметричное сопротивление бетона, окружающего расчетные полосы. Причинами являются различный характер

напряженного состояния и объем бетона, окружающего указанные полосы с внешней и внутренней стороны. Бетон с внутренней стороны наклонной растяжение, полосы испытывает максимальное значение которого соответствует уровню расположения продольной Поэтому арматуры. образование и раскрытие граничной трещины происходит в результате совместного действия сдвигающих и растягивающих усилий. В связи с тем, что ордината треугольной эпюры сопротивления окружающего бетона в этом уровне равна нулю, впоследствии при оценке сопротивления бетона этой особенностью можно пренебречь.

К третьей особенности относится изменение характера (механики) разрушения коротких балок по наклонным полосам бетона, которые выявлены при переходе угла наклона плоскости среза в отрицательный сектор. На рис.2 показаны схемы изменения видов разрушения сжатых полос и фрагмент секторов положительных и отрицательных углов линий среза.

Отличие схем разрушения балок заключается в том, что разрушение в результате среза в балках с отрицательным углом среза принципиально невозможно, так как в этом случае по сечению среза действуют только сжимающие напряжения.

Рассмотрим построение расчетных моделей при изменении пролета среза при определении прочности.

Приведем пример построения расчетной модели при пролете среза $a/h_0=0,5.$

В качестве основы построения модификации известной расчетной стержневой модели КСМ коротких балок [1] были использованы рассмотренные особенности напряженного состояния и схем разрушения.

На рис.3 показаны известная модель КСМ и ее модификация - КСМ-т. Приняты три предпосылки. К первой относится сохранение общего принципа построения стержневой модели [1]. Это означает, что ключевые точки модели, угол наклона сжатой полосы, ширина полосы поверху и понизу определяются в

полном соответствии с моделью КСМ. Ко второй предпосылке относится соблюдение разработанного принципа моделирования сопротивления бетонной призмы, куба и бруса.

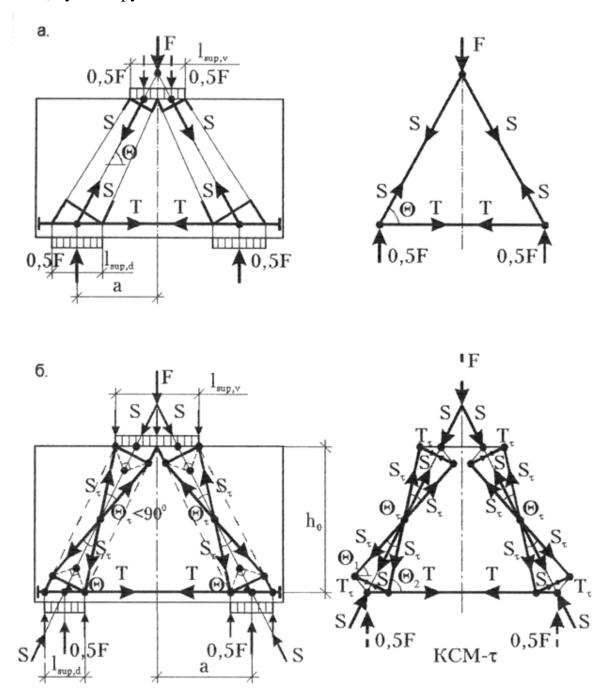
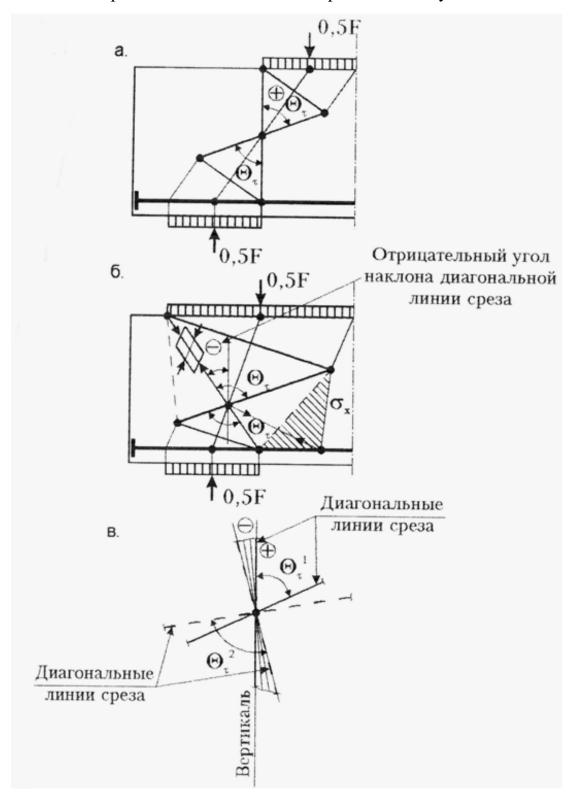



Рисунок 2 — Схема перехода разрушения наклонной бетонной полосы коротких балок от разрушения при совместном действии сжимающих усилий и усилий среза к разрушению при действии сжимающих усилий. а — диагональное

сечение среза проходит параллельно вертикальной оси; б — диагональное сечение среза имеет отрицательный угол наклона; в — фрагмент расположения сечений среза с положительным и отрицательным углами наклона

Рисунок 3 — Схемы стержневых расчетных моделей при оценке прочности коротких балок. а — модель КСМ; б — модель КСМ-т

Модель КСМ дополняется диагональными стержнями, имитирующими срез наклонной полосы. При этом упраздняются стержни, ранее в КСМ имитирующие боковые грани полосы. К третьей предпосылке относится изменение угла наклона верхнего и нижнего клиньев, имитирующего схему расположения диагональных сечений среза. Новая модель КСМ-т образуется путем замены каждого наклонного стержня в модели КСМ двумя наклонными X-образными стержнями, расположенными по направлению диагональных сечений среза сжатой бетонной полосы.

Сложная стержневая система состоит из симметрично расположенных относительно вертикальной оси ферменных аналогий сопротивления, в которых возникают растягивающие усилия среза S_{τ} (см. рис.3).

Расчет прочности сжатой полосы при срезе производится по следующей зависимости:

$$S_{\tau} \leq R_{bt}^* b L$$
, (1)

или

$$F \leq 4R_{bt}^*b L \sin\theta \cos\theta_{\tau} , \qquad (2)$$

где θ , θ_{τ} - углы наклона сечений среза;

L - длина диагонального участка линии среза, определяемая по формуле:

$$L = h_0 / \sin \theta_2 \; ; \tag{3}$$

здесь θ_2 - угол наклона сечения среза;

 ${R_{bt}}^*$ - прочность бетона при срезе с учетом влияния предельных напряжений,

$$R_{bt}^* = \gamma_{\tau} R_{bt}; \tag{4}$$

здесь γ_{τ} - коэффициент, определяемый на основании критерия прочности А.А.Гвоздева.

Расчет прочности коротких балок при совместном разрушении в

результате сжатия и среза производится по следующим формулам

$$S_{\tau} \leq R_{bt}^* b L , \qquad (5)$$

$$S_b \leq \gamma_{\tau_1} R_b b l_b , \qquad (6)$$

или

$$F \le 4R_{bt}^*b L \sin\theta \cos\theta_{\tau} + 2\gamma_{\tau 1}\Psi_{\nu}R_bb l_b \sin\theta , \qquad (7)$$

где l_b - ширина расчетной наклонной сжатой полосы бетона,

$$l_b = l_{\sup,v(d)} \sin\theta ; \qquad (8)$$

здесь V – коэффициент, учитывающий влияние бетона, окружающего расчетную полосу.

Расчет прочности по растянутому арматурному поясу не изменяется и производится по формулам

$$T \leq \gamma_s R_s A_s$$
, (9)

или

$$F \le \gamma_s R_s A_s tg\theta$$
, (10)

где γ_s - коэффициент, учитывающий влияние вида арматуры на прочность растянутого арматурного пояса.

Усовершенствованные модели КСМ-т и КСМ-Т при расчете прочности и трещиностойкости значительно увеличивают область действия новой методики расчета. Она включает в себя элементы с пролетом среза, равным нулю, короткие балки при пролете среза $a/h_0 \le 0.25$, а также балки с пролетом среза $1.0 \le a/h_0 \le 1.5$ при изменении большого числа факторов, значения которых изменялись в полном диапазоне. Предлагаемые каркасно-стержневые модели и расчетные зависимости позволяют обеспечить необходимую безопасность коротких балок на стадии их проектирования. Расчетные величины усилий хорошо согласуются с опытными данными. Среднее отклонение составляет $F_{\text{test}}/F_{\text{calc}}=1.14$; $F_{\text{test,crc}}/F_{\text{calc,crc}}=1.16$.

Библиографический список:

- 1. Лаврова О.В. Закономерность изменения усилий образования трещин и разрушающих усилий при увеличении пролета среза, длины опорных и грузовых площадок / О.В. Лаврова, А.Д. Маслов, А.С. Клейменов // Эффективные строительные конструкции: теория и практика. XVI Международная научно-техническая конференция. 2016. С.91-96.
- 2. СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения. М. НИИЖБ Госстроя России. 2004. С.24.
- 3. Свод правил по проектированию и строительству. Бетонные и железобетонные конструкции без предварительного напряжения арматуры СП 52-101-2003 М. 2004. С.55.
- 4. Баранова Т.И., Залесов А.С. Каркасно-стержневые расчетные модели и инженерные методы расчета железобетонных конструкций. М.: Издательство АСВ. 2003. С.238.