ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ВИНТОВОЙ ЛЕСТНИЦЫ В ОГРАНИЧЕННОМ ПРОСТРАНСТВЕ

Зернов Владимир Викторович,

Пензенский государственный университет архитектуры и строительства,

г. Пенза,

кандидат технических наук, доцент кафедры «Механика».

Зайцев Михаил Борисович,

Пензенский государственный университет архитектуры и строительства,

г. Пенза,

кандидат технических наук, доцент кафедры «Механика».

Аннотация

Зданиям и сооружениям для приведения в соответствие современным требованиям в рамках существующего пространства требуется капитальный ремонт.

В статье представлен оригинальный проект двух однотипных спиральных (циркульных/круговых) лестниц с центральными опорными столбами.

Ключевые слова: модернизация производства, капитальный ремонт, ограниченное пространство, винтовая лестница.

THE DESIGN FEATURES OF A SPIRAL STAIRCASE IN A CONFINED SPACE

Zernov Vladimir Victorovich,

Penza State University of Architecture and Construction, Penza,

Candidate of Sciences, Associate Professor of the department "Mechanics".

Zaytsev Mihail Borisovich,

Penza State University of Architecture and Construction, Penza,

Candidate of Sciences, Associate Professor of the department "Mechanics".

Abstract

Major repairs are required to bring buildings and structures into line with modern requirements within the existing space. The article presents an original design of two spiral (circular/circular) staircases of the same type with central support pillars.

Keywords: modernization of production, major repairs, limited space, spiral staircase.

Многим зданиям и сооружениям по разным причинам требуется капитальный ремонт с целью расширения или модернизации производства, либо приведения в соответствие современным требованиям в рамках существующего пространства [1-3]. Пензенский государственный университет архитектуры и строительства (ПГУАС) активно участвует в реализации таких задач [4-7].

В г. Заречный Пензенской области функционирует МАОУ ДО «Центр детского технического творчества» (ЦДТТ) с обсерваторией, построенный во второй половине XX столетия (рис.1).

Рисунок 1 – Общий вид МАОУ ДО «Центр детского технического творчества»

Для астрономического кружка Центра был закуплен современный электронный телескоп для изучения звёздного неба. Однако использовать его в башне нельзя, так как с момента начала эксплуатации здания ЦДТТ до наших дней обсерватория не функционировала, строительные конструкции купола морально и физически устарели, механизмы поворота купола разрушены интенсивной коррозией, стены и лестница между этажами обветшали. Потребовалась коренная модернизация объекта, приведение его в соответствие с новыми требованиями и нормами, техническими условиями, показателями качества: демонтаж старого купола и замена новым, капитальный ремонт смотровой площадки, стен, демонтаж старых лестниц и установка новых, проводка электричества и тепла.

Разработка проектной документации на капитальный ремонт проводилась специалистами ПГУАС. Одной из проблем было проектирование двух одномаршевых винтовых лестниц с центральными опорными столбами разной высоты на смотровую площадку с промежуточной междуэтажной площадкой. Проёмы между этажами выполнены в виде четверти окружности.

Винтовая лестница — идеальный вариант для небольшого проёма. Основными задачами при проектировании лестниц являлись: 1) вписаться в ограниченное пространство и в существующие проёмы; 2) обеспечить минимальное количество типоразмеров элементов.

Несущим элементом существующей консольной винтовой лестницы является круглая в плане стена, в которую жёстко защемлены железобетонные ступени. Высота ступеней более 30 см (рис.2).

Рисунок 2 – Существующая винтовая лестница

При проведении обмерных работ выяснилось, что в плане стена не круглая, а в виде эллипса.

Для ЦДТТ был разработан проект двух однотипных спиральных (циркульных/круговых) лестниц с центральными опорными столбами — это классические винтовые конструкции с постоянными внутренним и наружным радиусами по всей высоте. (Проектируемые лестницы вспомогательные, а не основные в здании ЦДТТ).

Конструкции состоят из 12 забежных ступеней, хорошо вписываются в малых пространствах, соединяя разные уровни помещения (верхней 13 ступенью служит пол второго этажа, а пол первого этажа считается нулевой ступенью). Высота всех ступеней (кроме ступеней №1 на каждом этаже) 22 см, что позволило обеспечить минимальное количество типоразмеров конструктивных элементов. Наклон винтовой лестницы к горизонту составляет 35°, что в пределах рекомендуемых 23° – 37° для общественных зданий. Раскладка забежных ступеней осуществлялась графическим методом (см. рис.2).

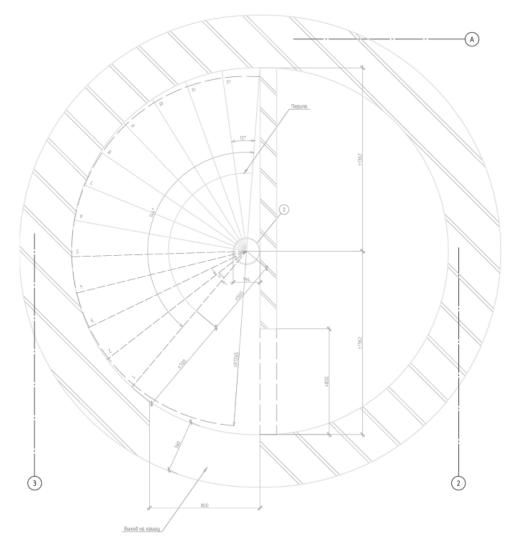


Рисунок 3 – Раскладка забежных ступеней

Для обеспечения надёжности лестниц предусмотрены дополнительные опоры ступеней не только в центральной стойке, но и в периметральной стене. Ступень в этом варианте работает как балка на двух опорах, а не как консоль. В проекте, как минимум, под каждую чётную ступень по месту в стену устанавливаются по 2 опорных анкера, которые впоследствии привариваются к каркасу ступеней. Длины анкеров устанавливаются по месту, так как стена в плане имеет форму эллипса, из условия, что они заглубляются в стену на глубину не менее 150 мм (рис.3).

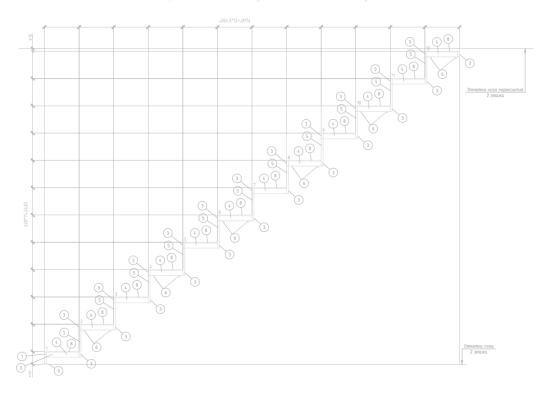


Рисунок 4 – Развертка лестницы

Ещё одной проблемой при проектировании лестниц было обеспечение минимального просвета, который должен быть между началом проёма винтовой лестницы и головой человека. Чтобы «вписаться» в существующие проёмы в междуэтажных перекрытиях и габариты лестничных клеток при ограниченности пространства, ступени выполнены без подступенков, а монтаж элементов ступеней к опорным стойкам рекомендовано начинать со ступени №12 (рис.2).

Общий вид новой винтовой лестницы приведён на рис.4.

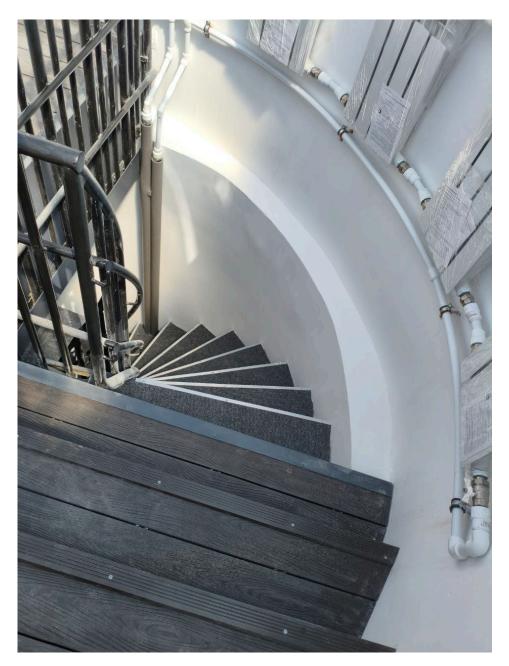


Рисунок 5 – Общий вид новой винтовой лестницы

Библиографический список:

- Опыт обследования зданий и сооружений / А. И. Шеин, С. В. Бакушев, В. В. Зернов, М. Б. Зайцев // Моделирование и механика конструкций. 2017. № 5.
 С. 16. EDN YJWNGF.
- 2. Нормативно-правовые документы и регламенты в обеспечении надёжности зданий и сооружений / А. И. Шеин, М. Б. Зайцев, В. В. Зернов, И. В. Зернов // Региональная архитектура и строительство. 2017. № 3(32). С. 94-98. EDN ZRETLX.

- 3. Шеин, А. И. Влияние конструктивного и эксплуатационного отказов на долговечность строительных конструкций / А. И. Шеин, В. В. Зернов, М. Б. Зайцев // Региональная архитектура и строительство. 2017. № 2(31). С. 64-71. EDN ZRETVX.
- 4. Зернов, В. В. Опыт использования запаса несущей способности стропильной фермы при реконструкции производственного цеха / В. В. Зернов, М. Б. Зайцев // Моделирование и механика конструкций. 2018. № 7. С. 20. EDN UQANUA.
- 5. Шеин, А. И. Усиление несущих элементов ендов стропильных крыш / А.
 И. Шеин, В. В. Зернов, М. Б. Зайцев // Региональная архитектура и строительство.
 2020. № 1(42). С. 135-139. EDN BPDYFM.
- 6. Зернов, В. В. Вариант замены несущих строительных конструкций при реновации здания ресторана "бочка" в г. Пенза / В. В. Зернов, М. Б. Зайцев // Моделирование и механика конструкций. 2018. № 8. С. 14. EDN YOFOEH.
- 7. Шеин, А. И. Опыт реконструкции жилого дома после внезапного отказа / А. И. Шеин, В. В. Зернов, М. Б. Зайцев // Моделирование и механика конструкций. 2018. № 7. С. 21. EDN XOPMAX.