ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТОНКОСТЕННОГО Z-ОБРАЗНОГО СТЕРЖНЯ С ЗАКРУГЛЕНИЕМ И С НАРУЖНОЙ ОТБОРТОВКОЙ

Волков Владимир Павлович,

Пензенский государственный университет архитектуры и строительства, г. Пенза,

кандидат технических наук, доцент кафедры «Механика».

Аннотация

Статья посвящена определению геометрических характеристик гнутого тонкостенного стержня Z-образного профиля с закруглением и с наружной отбортовкой при расчете его на растяжение и изгиб с кручением. Приведены расчетные формулы для определения относительных значений длины контура, главных осевых моментов инерции и главных осевых моментов сопротивления, главных секториальных координат.

Ключевые слова: гнутый тонкостенный стержень, Z-образный профиль, главные центральные оси сечения, главные осевые моменты инерции, главные осевые моменты сопротивления, главные секториальные координаты.

GEOMETRIC CHARACTERITICS THIN-WALLED Z-SHAPED ROD WITH OUT EDGE

Volkov Vladimir Pavlovich,

Penza State University of Architecture and Construction, Penza, Candidate of Sciences, Associate Professor of the department «Mechanics».

Abstract

Article is devoted to definition of the geometric characteristics of a buckler

thin-walled rod Z-shaped profile with out edge for calculation this on tension, curve, turn. To deduce a formula of calculation dimensions length of contours, main axes moments of inertia and main axes moments of resistance, main sector coordinates.

Keywords: buckler thin-walled rod, Z-shaped profile, the main central axes section, main axes moments of inertia, main axes moments of resistance, main sector coordinates.

Условные обозначения (рис.1): ХҮ – главные центральные оси сечения; B=2b — габаритная ширина срединной линии профиля сечения; H=2hгабаритная высота срединной линии профиля сечения; $\delta \ll h, b$ постоянная толщина срединной линии профиля сечения; L – полная длина срединной линии профиля сечения; r — радиус закругления срединной линии профиля сечения станком; s — длина отбортовки; γ – угол между наклонной стенкой профиля и осью X; $b_h = b/h$ — относительная ширина профиля сечения; $s_h =$ $r_h = r/h$ s/h — относительная длина отбортовки; относительный радиус закругления профиля сечения.

В статье рассматривается задача определения геометрических размеров и геометрических характеристик сечения гнутого тонкостенного стержня Z-образного сечения толщины δ с обратной отбортовкой s и с закруглением r, т.е. определяется относительная ширина сечения b_h , при заданных значениях угла γ и величине r, когда одна из главных центральных осей сечения параллельна полкам.

Дано:
$$0 < \gamma < \frac{\pi}{2}$$
; δ ; s

$$0 \le r_h \le \frac{\cos \gamma}{1 + \cos \gamma}$$
.

Найти: $b_h - ?$

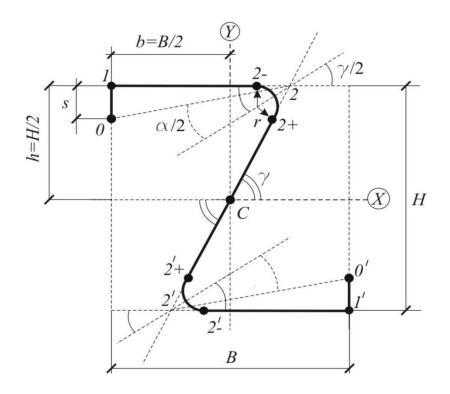


Рисунок 1 - Z-образный профиль с обычной отбортовкой *s*,

Случай, когда тонкостенный Z-образный стержень с полками параллельными главной центральной оси, с постоянной толщиной δ с обратной отбортовкой s, но без учета закругления r рассмотрен в [1].

Итак, учитывая центральную симметрию, рассмотрим верхнюю половину сечения (рис.2), причём, центр тяжести, центр изгиба или центр кручения всего сечения совпадают с центром симметрии, т.е. с точкой \boldsymbol{C} (рис.1).

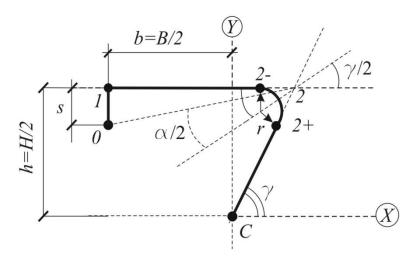


Рисунок 2 - Верхняя половина сечения с обычной отбортовкой *s*.

С - центр симметрии

Декартовые координаты х, у характерных точек и длины соответствующих участков l (рис. 2):

Для обратной отбортовки s:

$$x_{0} = -b,$$
 $y_{0} = h + s,$ $l_{0} = s;$ $x_{1} = -b,$ $y_{1} = h,$ $l_{1} = b;$ $x_{2-} = \frac{h}{\tan \gamma} - \frac{r}{\tan^{\gamma}/2},$ $y_{2-} = h,$ $l_{2-} = \frac{h}{\tan \gamma} - \frac{r}{\tan^{\gamma}/2};$ $x_{2+} = x_{2-} + r \cdot \sin \gamma,$ $y_{2+} = h - r - r \cdot \cos \gamma,$ $l_{2+} = \frac{h}{\sin \gamma} - \frac{r}{\tan^{\gamma}/2}.$

Центральные оси XY (рис.5) являются главными [7], если

$$I_{XY} = \int_0^{L/2} \delta(s) \cdot x(s) \cdot y(s) \cdot ds \Rightarrow 0,$$

$$s \cdot \boldsymbol{b} \cdot \left(h + \frac{s}{2}\right) + \frac{h \cdot \boldsymbol{b}^2}{2} = \frac{l_2 \cdot x_2 \cdot y_2}{2} + \frac{l_2 \cdot x_2 \cdot y_2}{3} + \dots + \int_0^{\pi - \gamma} (x_{2-} + r \cdot \sin \varphi) \cdot (h - r + r \cdot \cos \varphi) \cdot r \cdot d\varphi,$$

$$s \cdot \boldsymbol{b} \cdot \left(h + \frac{s}{2}\right) + \frac{h \cdot \boldsymbol{b}^2}{2} = \frac{l_2 \cdot x_2 \cdot y_2}{2} + \frac{l_2 \cdot x_2 \cdot y_2}{3} + \dots + r \cdot \left(\left(x_{2-} \cdot (\pi - \gamma) + r \cdot (1 + \cos \gamma)\right) \cdot (h - r) + \left(x_{2-} + \frac{r \cdot \sin \gamma}{2}\right) \cdot r \cdot \sin \gamma\right),$$
 где, вводя обозначения
$$x_h = \frac{x_{2-}}{h} = \frac{1}{\tan \gamma} - \frac{r_h}{\tan^{\gamma}/_2}, \qquad \beta = \pi - \gamma,$$

 $\beta = \pi - \gamma$,

относительное значение $\boldsymbol{b_h} > 0$ найдем из решения квадратного уравнения:

$$b_{h}^{2} + b_{h} \cdot \left(\frac{\delta_{s}}{\delta}\right) \cdot s_{h} \cdot (2 + s_{h}) -$$

$$-x_{h}^{2} - \frac{2}{3} \cdot (x_{h} + r_{h} \cdot \sin \gamma) \cdot \left(1 - r_{h} \cdot (1 + \cos \gamma)\right) \cdot \left(\frac{1}{\sin \gamma} - \frac{r_{h}}{\tan^{\gamma}/2}\right) -$$

$$-2 \cdot r_{h} \cdot \left(\left(x_{h} \cdot \beta + r_{h} \cdot (1 + \cos \gamma)\right) \cdot (1 - r_{h}) + \left(x_{h} + \frac{r_{h} \cdot \sin \gamma}{2}\right) \cdot r_{h} \cdot \sin \gamma\right) =$$

$$= 0. \tag{1}$$

Введем обозначения для относительных координат точек и относительных длин участков:

$$x_{0h} = -b_h, \quad y_{0h} = 1 + s_h, \qquad l_{01h} = s_h;$$
 $x_{1h} = -b_h, \quad y_{1h} = 1, \qquad l_{12-h} \Rightarrow b_h + \frac{1}{\tan \gamma} - \frac{r_h}{\tan^{\gamma}/2}.$
 $x_{2+h} = x_h + r_h \cdot \sin \gamma, \qquad y_{2+h} = 1 - r_h - r_h \cdot \cos \gamma, \qquad l_{2+h} = \frac{1}{\sin \gamma} - \frac{r_h}{\tan^{\gamma}/2}.$

Относительная длина контура гнутого Z-образного профиля L/H:

$$\boldsymbol{l_h} = \frac{L}{H} = \frac{L/2}{h} \Rightarrow (s_h + \boldsymbol{b_h} + x_h) + r_h \cdot \beta + \left(\frac{1}{\sin \gamma} - \frac{r_h}{\tan^{\gamma}/2}\right), \tag{2}$$
где $L/2 = s + \boldsymbol{b} + x_{2-} + r \cdot \beta + l_{2+},$

Относительная площадь гнутого Z-образного профиля $A/(\delta \cdot H)$:

$$\boldsymbol{A}_{\delta h} = \frac{A}{\delta \cdot H} = \frac{A}{2 \cdot \delta \cdot h} \Rightarrow s_h + \boldsymbol{b}_h + x_h + r_h \cdot \beta + l_{2+h}, \tag{3}$$

где
$$\mathbf{A} = 2 \cdot \delta \cdot (s + \mathbf{b} + x_{2-} + r \cdot \beta + l_{2+}).$$

Главные осевые моменты инерции (рис.2) определяются по формулам:

$$I_{X} = \int_{A} y^{2}(s) \cdot dA \Rightarrow 2 \cdot \int_{L/2} \delta(s) \cdot y^{2}(s) \cdot ds \Rightarrow$$

$$\Rightarrow 2 \cdot \delta \cdot \begin{cases} \frac{l_{01}}{3} \cdot (y_{0}^{2} + y_{1}^{2} + y_{0} \cdot y_{1}) + l_{12-} \cdot h^{2} + \frac{l_{2+}}{3} \cdot y_{2+}^{2} + \\ + \int_{0}^{\beta} (h - r + r \cdot \cos \varphi)^{2} \cdot r \cdot d\varphi \end{cases},$$

$$I_{X} \cdot \frac{1}{2 \cdot \delta \cdot h^{3}} \Rightarrow \frac{l_{01h}}{3} \cdot (y_{0h}^{2} + y_{1h}^{2} + y_{0h} \cdot y_{1h}) + l_{12-h} + \frac{l_{2+h}}{3} \cdot y_{2+h}^{2} + \\ + r_{h} \cdot \left[(1 - r_{h})^{2} \cdot \beta + 2 \cdot r_{h} \cdot (1 - r_{h}) \cdot \sin \gamma + r_{h}^{2} \cdot \frac{\beta - \sin \gamma \cdot \cos \gamma}{2} \right]; \tag{4}$$

$$I_{Y} = \int_{A} x^{2}(s) \cdot dA \Rightarrow 2 \cdot \int_{L/2} \delta(s) \cdot x^{2}(s) \cdot ds \Rightarrow$$

$$\Rightarrow 2 \cdot \delta \cdot \begin{cases} l_{01} \cdot \boldsymbol{b}^{2} + \frac{l_{12-}}{3} \cdot (x_{1}^{2} + x_{2-}^{2} + x_{1} \cdot x_{2-}) + \frac{l_{2+}}{3} \cdot x_{2+}^{2} + \\ + \int_{0}^{\beta} (x_{2-} + r \cdot \sin \varphi)^{2} \cdot r \cdot d\varphi \end{cases}$$

$$I_{Y} \cdot \frac{1}{2 \cdot \delta \cdot h^{3}} \Rightarrow l_{01h} \cdot \boldsymbol{b}_{h}^{2} + \frac{l_{12-h}}{3} \cdot (x_{1h}^{2} + x_{h}^{2} + x_{1h} \cdot x_{h}) + \frac{l_{2+h}}{3} \cdot x_{2+h}^{2} + \\ + r_{h} \cdot \left[x_{h}^{2} \cdot \beta + 2 \cdot r_{h} \cdot x_{h} \cdot (1 + \cos \gamma) + r_{h}^{2} \cdot \frac{\beta + \sin \gamma \cdot \cos \gamma}{2} \right]. \tag{5}$$

Главные осевые моменты сопротивления определяются по формулам:

$$W_{x} = \frac{I_{x}}{y_{max}} \Rightarrow \frac{I_{x}}{h'},$$

$$W_{x} \cdot \frac{1}{2 \cdot \delta \cdot h^{2}} \Rightarrow I_{x} \cdot \frac{1}{2 \cdot \delta \cdot h^{3}};$$

$$W_{y} = \frac{I_{y}}{x_{max}} \Rightarrow \frac{I_{y}}{b'},$$

$$W_{y} \cdot \frac{1}{2 \cdot \delta \cdot h^{2}} \Rightarrow \frac{1}{b_{h}} \cdot I_{y} \cdot \frac{1}{2 \cdot \delta \cdot h^{3}}.$$
(6)

Для нахождения главного секториального момента инерции

 $I_{\omega} = \int_{A} \overline{\omega}^{2}(s) \cdot dA$ введем секториальные координаты ω (удвоенная площадь сектора между полюсом, начальной и текущей точками на профиле сечения стержня), где полюс и начальная точка отсчета выбраны в точке C:

$$\omega_{C} = 0; \qquad \omega_{2+} = 0;$$

$$\omega(\varphi) = l_{2+} \cdot r \cdot (1 - \cos \varphi) + r^{2} \cdot (\varphi - \sin \varphi), \qquad 0 \le \varphi \le \beta;$$

$$\omega_{2-} = l_{2+} \cdot r \cdot (1 - \cos \beta) + r^{2} \cdot (\beta - \sin \beta);$$

$$\omega_{1} = \omega_{2-} + h \cdot l_{12-}; \qquad \omega_{0} = \omega_{1} - s \cdot b.$$

Относительные секториальные координаты ω/h^2 :

$$\omega_{2-h} = l_{2+h} \cdot r_h \cdot (1 - \cos \beta) + r_h^2 \cdot (\beta - \sin \beta);$$

$$\omega_{1h} = \omega_{2-h} + l_{12-h}; \qquad \omega_{0h} = \omega_{1h} - s_h \cdot b_h.$$

Секториальный статический момент:

$$\mathbf{S} = \int_{A} \omega \cdot dA \Rightarrow 2 \cdot \int_{0}^{L/2} \delta(s) \cdot \omega(s) \cdot ds = 2 \cdot \mathbf{S_{0}} = 2 \cdot (\delta \cdot h^{3}) \cdot \mathbf{S_{0h}},$$

$$S_{C} = 0; \qquad S_{2+} = 0;$$

$$S_{2-} = \delta \cdot \int_{0}^{\beta} \omega(\varphi) \cdot r \cdot d\varphi \Rightarrow$$

$$\Rightarrow \delta \cdot r^2 \cdot \left(l_{2+} \cdot (\beta - \sin \beta) + r \cdot \left(\frac{\beta^2}{2} - (1 - \cos \beta) \right) \right) = (\delta \cdot h^3) \cdot S_{2-h};$$

$$S_1 = S_{2-} + \delta \cdot \frac{\omega_1 + \omega_{2-}}{2} \cdot l_{12-}; \qquad S_0 = S_1 + \delta_s \cdot \frac{\omega_1 + \omega_0}{2} \cdot s.$$

Относительные секториальные статические моменты $S/(\delta \cdot h^3)$:

$$S_{2-h} = r_h^2 \cdot \left(l_{2+h} \cdot (\beta - \sin \beta) + r_h \cdot \left(\frac{\beta^2}{2} - (1 - \cos \beta) \right) \right);$$

$$S_{1h} = S_{2-h} + \frac{\omega_{1h} + \omega_{2-h}}{2} \cdot l_{12-h}; \qquad S_{0h} = S_{1h} + \frac{\omega_{1h} + \omega_{0h}}{2} \cdot s_{h}.$$

Постоянная D, определяющая главную начальную точку отсчета M_0 (рис.9),

где s_0 — расстояние от т. (2 —) до точки, где $\overline{\boldsymbol{\omega}} = 0$:

$$D = \frac{s}{\int_A dA} \Rightarrow \frac{s_0}{A/2} = h^2 \cdot \frac{s_{0h}}{A_{\delta h}}; \tag{8}$$

$$\mathbf{s_0} = \frac{\mathbf{b} - \omega_{2-}}{h} \Rightarrow h \cdot \left(\frac{\mathbf{s_{0h}}}{\mathbf{A_{Sh}}} - \omega_{2-h}\right). \tag{9}$$

Главные секториальные координаты $\overline{\boldsymbol{\omega}} = \boldsymbol{\omega} - \boldsymbol{D}$ (рис.3):

$$\begin{split} \overline{\boldsymbol{\omega}}_{\boldsymbol{C}} &= \overline{\boldsymbol{\omega}}_{2+} \Rightarrow h^2 \cdot \left(-\frac{\boldsymbol{S}_{0h}}{\boldsymbol{A}_{\delta h}} \right) = -\boldsymbol{D}; \qquad \overline{\boldsymbol{\omega}}_{2-} \Rightarrow h^2 \cdot \left(\boldsymbol{\omega}_{2-h} - \frac{\boldsymbol{S}_{0h}}{\boldsymbol{A}_{\delta h}} \right); \\ \overline{\boldsymbol{\omega}}_{1} &\Rightarrow h^2 \cdot \left(\boldsymbol{\omega}_{1h} - \frac{\boldsymbol{S}_{0h}}{\boldsymbol{A}_{\delta h}} \right); \qquad \overline{\boldsymbol{\omega}}_{0} \Rightarrow h^2 \cdot \left(\boldsymbol{\omega}_{0h} - \frac{\boldsymbol{S}_{0h}}{\boldsymbol{A}_{\delta h}} \right). \end{split}$$

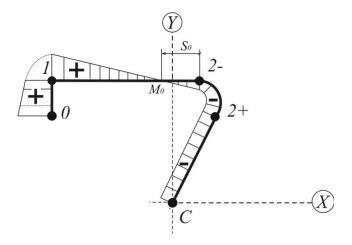


Рисунок 3 - Эпюра главных $\overline{\omega}(s)$ для профиля с обычной отбортовкой с полюсом в C и начальной точкой отсчета в M_0

Относительные главные секториальные координаты $\bar{\omega}/h^2$:

$$\overline{\omega}_{Ch} = \overline{\omega}_{2+h} \Rightarrow \left(-\frac{S_{0h}}{A_{\delta h}}\right); \qquad \overline{\omega}_{2-h} \Rightarrow \left(\omega_{2-h} - \frac{S_{0h}}{A_{\delta h}}\right);$$

$$\overline{\omega}_{1h} \Rightarrow \left(\omega_{1h} - \frac{S_{0h}}{A_{\delta h}}\right); \qquad \overline{\omega}_{0h} \Rightarrow \left(\omega_{0h} - \frac{S_{0h}}{A_{\delta h}}\right).$$

Главный секториальный момент инерции определяется по формуле:

$$I_{\omega} = \int_{A} \overline{\omega}^{2}(s) \cdot dA \Rightarrow 2 \cdot \delta \cdot \int_{0}^{L/2} \overline{\omega}^{2}(s) \cdot ds \Rightarrow$$

$$\Rightarrow 2 \cdot \delta \cdot \begin{cases} \frac{l_{01}}{3} \cdot (\overline{\omega}_{0}^{2} + \overline{\omega}_{1}^{2} + \overline{\omega}_{0} \cdot \overline{\omega}_{1}) + \frac{l_{12-}}{3} \cdot (\overline{\omega}_{1}^{2} + \overline{\omega}_{2-}^{2} + \overline{\omega}_{1} \cdot \overline{\omega}_{2-}) + \\ + l_{2+} \cdot \overline{\omega}_{2+}^{2} + \int_{0}^{\beta} (\omega(\varphi) - \mathbf{D})^{2} \cdot r \cdot d\varphi \end{cases}$$

$$I_{\omega} \cdot \frac{1}{2 \cdot \delta \cdot h^{5}} \Rightarrow \frac{l_{01h}}{3} \cdot (\overline{\omega}_{0h}^{2} + \overline{\omega}_{1h}^{2} + \overline{\omega}_{0h} \cdot \overline{\omega}_{1h}) + l_{2+h} \cdot (-\frac{S_{0h}}{A_{\delta h}})^{2} + \\ + \frac{l_{12-h}}{3} \cdot (\overline{\omega}_{1h}^{2} + \overline{\omega}_{2-h}^{2} + \overline{\omega}_{1h} \cdot \overline{\omega}_{2-h}) + \\ + r_{h}^{3} \cdot \begin{pmatrix} l_{2+h}^{2} \cdot (\frac{3 \cdot \beta}{2} + \frac{\sin 2\beta}{4} - 2 \cdot \sin \beta) + l_{2+h} \cdot r_{h} \cdot (\beta - \sin \beta)^{2} + \\ + r_{h}^{2} \cdot (\frac{\beta^{2}}{2} + \frac{\beta}{2} - \frac{\sin 2\beta}{4} - 2 \cdot (\sin \beta - \beta \cdot \cos \beta)) \end{pmatrix} - \\ - 2 \cdot S_{2-h} \cdot \frac{S_{0h}}{A_{\delta h}} + r_{h} \cdot \beta \cdot (\frac{S_{0h}}{A_{\delta h}})^{2}. \tag{10}$$

После определения геометрических характеристик, по принципу независимости действия сил, полные нормальные напряжения в произвольной точке поперечного сечения жесткого тонкостенного Z-образного стержня (с учетом знака) определяются по формуле [2]:

$$\boldsymbol{\sigma} = \frac{N}{A} + \frac{M_x}{I_x} \cdot \boldsymbol{Y}(s) + \frac{M_y}{I_y} \cdot \boldsymbol{X}(s) + \frac{B_\omega}{I_\omega} \cdot \overline{\boldsymbol{\omega}}(s), \tag{11}$$

где внутренние усилия:

 N, M_x, M_y — соответственно продольная сила и изгибающие моменты относительно главных центральных осей, определяемые методом сечения,

 B_{ω} — бимомент в рассматриваемом поперечном сечении, определяемый из решения дифференциального уравнения для углов закручивания при стесненном кручении тонкостенного стержня открытого профиля.

Библиографический список:

1. Волков В.П. Геометрические характеристики тонкостенного Z-образного стержня с наружной отбортовкой. [Электронный ресурс]

//Моделирование и механика конструкций. 2025. №15. URL: <a href="http://mechanics.pguas.ru/Plone/nomera-zhurnala/no15/stroitelnaya-mechanika/geometric-harakterics-tonkostennogo-z-obraznogo-sterzhnya with out edge/at download/file (дата обращения: 06.05.2025).

2. Александров А.В., Потапов В.Д., Державин Б.П. Сопротивление материалов: Учеб. для вузов. - М: Высш. шк., 1995. - 560 с.; ил.