ВНЕЦЕНТРЕННО НАГРУЖЕННАЯ КОЛОННА ПЛАВНО-ПЕРЕМЕННОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ

Бакушев Сергей Васильевич,

Пензенский государственный университет архитектуры и строительства, г.Пенза, доктор технических наук, профессор кафедры «Механика».

Коровушкина Екатерина Дмитриевна,

Пензенский государственный университет архитектуры и строительства, г.Пенза,

студент.

Аннотация

В данной работе рассматриваются вопросы расчёта массивных упругих внецентренно нагруженных колонн плавно-переменного сечения. На примере колонны с прямоугольным поперечным сечением получены формулы для площади поперечного сечения и осевых моментов инерции относительно главных центральных осей на любом уровне колонны. Рассмотрен числовой пример, в котором определены нейтральные линии и построены ядра сечений в верхнем среднем по длине и нижнем поперечном сечениях. Кроме того, определено опасное по нормальным напряжениям сечение и вычислена несущая способность колонны. Приведён алгоритм определения опасного по напряжениям поперечного Показано. нормальным сечения. что BO внецентренно сжатых колоннах с плавно-переменным сечением, сечения, опасные по растягивающим и сжимающим нормальным напряжениям могут, вообще говоря, располагаться на разных уровнях, то есть не совпадать.

Ключевые слова: упругий стержень, плавно-переменное поперечное сечение, внецентренное сжатие, нейтральная линия, ядро сечения, несущая способность.

EXTRA-CENTRICALLY LOADED COLUMN WITH SMOOTHLY VARIABLE CROSS-SECTION

Bakushev Sergey Vasilevish,

Penza State University of Architecture and Construction, Penza, Doctor of Sciences, Professor of the department "Mechanics".

Korovushkina Ekaterina Dmitrievna,

Penza State University of Architecture and Construction, Penza, student.

Abstract

This paper deals with the problems of calculating massive elastic extracentered loaded columns of smoothly variable cross-section. Using the example of a column with a rectangular cross-section, formulas are obtained for the cross-sectional area and axial moments of inertia relative to the main central axes at any level of the column. A numerical example is considered, in which neutral lines are defined and cross-section cores are plotted in the upper middle length and lower cross-sections. In addition, the cross-section dangerous in terms of normal stresses was determined and the bearing capacity of the column was calculated. An algorithm for determining a dangerous cross-section by normal stresses is given. It is shown that in extra-centered compressed columns with a smoothly variable cross-section, cross-sections that are dangerous in terms of tensile and compressive normal stresses can, generally speaking, be located at different levels, that is, they do not coincide.

Keywords: elastic rod, smoothly variable cross-section, out-of-center compression, neutral line, section core, bearing capacity.

Введение.

Колонны плавно-переменного поперечного сечения, работающие на внецентренное сжатие, не получили широкого распространения при строительстве каркасов гражданских и промышленных зданий за исключением, возможно, лишь свайных фундаментов. Связано это, по-видимому, прежде всего со сложной технологией изготовления таких конструкций. Вместе с тем, колонны с плавно-переменным поперечным сечением получили широкое распространение при строительстве железобетонных опор линий электропередач. Как и центрально сжатые колонны, колонны с плавнопеременным поперечным сечением, работающие на внецентренное сжатие, позволяют более рационально использовать рабочую площадь поперечного сечения, что, в конце концов, приводит к экономии материала.

Обзор литературы последнего десятилетия показывает, что интерес к колоннам плавно переменного поперечного сечения не выходит из поля зрения инженеров и исследователей. Так в работах С.Н. Царенко [1, 5, 8] рассматриваются вопросы устойчивости и колебаний стержней переменного сечения. В работах Л.М. Коган-Розенцвейга [3, 4] исследуется работа стержня переменного сечения при продольно-поперечном изгибе. В работах А.Л. Готмана и Л.Я. Соколова [6, 7] оценивается работа комбинированных свай переменного сечения на горизонтальную нагрузку. В статье [2] исследуется работа стальной рамы переменного сечения с расщеплением карнизного узла. В статьях [9, 10, 11] рассматриваются стойки и балки переменного сечения.

Теоретические основы.

Если поперечное сечение внецентренно сжатой колонны плавнопеременное, то нормальные напряжения в какой-либо точке (x, y) поперечного сечения на уровне *z* следует вычислять по формуле:

$$\sigma_{z}(x, y, z) = \frac{F}{A(z)} + \frac{Fy_{0}y}{I_{x}(z)} + \frac{Fx_{0}x}{I_{y}(z)}.$$
(1)

Уравнение нейтральной линии при этом будет иметь вид:

$$1 + \frac{y_0 y}{i_x^2(z)} + \frac{x_0 x}{i_y^2(z)} = 0,$$
⁽²⁾

где $i_x^2(z) = \frac{I_x(z)}{A(z)}; \quad i_y^2(z) = \frac{I_y(z)}{A(z)}.$

Отрезки, отсекаемые нейтральной линией на осях координат, являющихся главными центральными осями инерции поперечного сечения, будут определяться по формулам:

$$a_{x}(z) = -\frac{i_{y}^{2}(z)}{x_{0}}; \ a_{y}(z) = -\frac{i_{x}^{2}(z)}{y_{0}}.$$
(3)

Положение опасного по нормальным напряжениям поперечного сечения *z*_{оп} можно найти из уравнения:

$$\frac{\frac{\partial A(z)}{\partial z}}{[A(z)]^2} + \frac{y_0 y \frac{\partial I_x(z)}{\partial z}}{[I_x(z)]^2} + \frac{x_0 x \frac{\partial I_y(z)}{\partial z}}{[I_y(z)]^2} = 0.$$
(4)

Несущая способность колонны по сжатым (-) или растянутым (+) волокнам оценивается по опасному сечению с использованием формулы:

$$F \leq \frac{R_{\sigma}^{(\pm)} \gamma_{d}}{\frac{1}{A(z_{\text{off}})} + \frac{y_{0} y_{\text{max}}^{(\pm)}}{I_{x}(z_{\text{off}})} + \frac{x_{0} x_{\text{max}}^{(\pm)}}{I_{y}(z_{\text{off}})}.$$
(5)

Прямоугольное поперечное сечение.

Пусть колонна плавно-переменного сечения имеет прямоугольное поперечное сечение размером $b(z) \times h(z)$ (рис. 1). Размеры нижнего сечения обозначим $b_0 \times h_0$, размеры верхнего сечения обозначим $b_1 \times h_1$. Пусть для всех сечений по высоте колонны выполняется зависимость:

$$b(z) = k \cdot h(z). \tag{6}$$

Уравнение наклонного ребра a_0a_1 колонны в системе координат U, Z можно записать в следующем виде:

$$u(z) = \frac{1}{2}\sqrt{b_0^2 + h_0^2} - \frac{1}{2}\left(\sqrt{b_0^2 + h_0^2} - \sqrt{b_1^2 + h_1^2}\right)\frac{z}{H}.$$
 (7)

С учётом зависимости (6) уравнение (7) получает вид:

$$u(z) = \frac{1}{2}\sqrt{k^2 + 1} \left[h_0 - (h_0 - h_1)\frac{z}{H} \right].$$
(8)

Рисунок 1 – Поперечные сечения колонны плавно переменного

Так как $u^2 = \frac{1}{4} (h^2 + b^2)$, то с учётом зависимости (6) получим: $h(z) = \frac{2 \cdot u(z)}{\sqrt{k^2 + 1}}; \ b(z) = k \frac{2 \cdot u(z)}{\sqrt{k^2 + 1}}.$ (9)

Теперь геометрические характеристики прямоугольного поперечного сечения получают вид:

$$A(z) = b(z) \cdot h(z) = k \frac{4 \cdot u(z)}{k^2 + 1};$$
(10)

$$I_{x}(z) = \frac{b(z) \cdot h(z)^{3}}{12} = k \frac{4 \cdot u(z)^{4}}{3(k^{2} + 1)^{2}}; \quad I_{y}(z) = \frac{b(z)^{3} \cdot h(z)}{12} = k^{3} \frac{4 \cdot u(z)^{4}}{3(k^{2} + 1)^{2}}; \quad (11)$$

$$i_x^2(z) = \frac{I_x(z)}{A(z)} = \frac{1}{3} \frac{u(z)^3}{k^2 + 1}; \quad i_y^2(z) = \frac{1}{3} k^2 \frac{u(z)^3}{k^2 + 1}.$$
(12)

Пример расчёта.

Рассмотрим в качестве примера колонну высотой H = 12 м с плавнопеременным прямоугольным сечением:

$$b_0 = 1$$
 м; $h_0 = 1,5$ м; $b_1 = 0,5$ м; $h_1 = 0,75$ м.

Колонна внецентренно сжата силой F = 500 кH, приложенной в точке с координатами $x_0 = 0,125 \text{ м}$; $y_0 = 0,1875 \text{ м}$. Расчётное сопротивление материала колонны по сжимающим напряжениям $R_{\sigma}^{(-)} = 50 \text{ МПа}$, расчётное сопротивление материала колонны по растягивающим напряжениям $R_{\sigma}^{(+)} = 5 \text{ МПа}$. Коэффициент условий работы $\gamma_d = 1$.

Вычисляем коэффициент
$$k = \frac{b_0}{h_0} = \frac{b_1}{h_1} = \frac{1}{1.5} = \frac{0.5}{0.75} = 0.667$$
.

Уравнение (8) получает вид:

$$u(z) = \frac{1}{2}\sqrt{0.667^2 + 1} \cdot \left[1.5 - (1.5 - 0.75)\frac{z}{12}\right] = 0.9015 - 0.0376 \cdot z.$$

Вычисляем геометрические характеристики поперечных сечений колонны (формулы (10)-(12)):

$$A(z) = k \frac{4 \cdot u(z)}{k^2 + 1} = 0,667 \frac{4 \cdot (0,9015 - 0,0376 \cdot z)}{1,202} = 2,001 - 0,0835 \cdot z;$$

$$I_x(z) = k \frac{4 \cdot u(z)^4}{3(k^2 + 1)^2} = 0,667 \frac{4 \cdot (0,9015 - 0,0376 \cdot z)^4}{3 \cdot 1,202^2} =$$

$$= 0,6155 \cdot (0,9015 - 0,0376 \cdot z)^4;$$

$$I_y(z) = k^3 \frac{4 \cdot u(z)^4}{3(k^2 + 1)^2} = 0,667^3 \frac{4 \cdot (0,9015 - 0,0376 \cdot z)^4}{3 \cdot 1,202^2} =$$

$$= 0,2738 \cdot (0,9015 - 0,0376 \cdot z)^4;$$

$$i_x^2(z) = \frac{1}{3} \frac{u(z)^3}{k^2 + 1} = \frac{(0,9015 - 0,0376 \cdot z)^3}{3 \cdot 1,202} = 0,2774 \cdot (0,9015 - 0,0376 \cdot z)^3;$$

$$i_y^2(z) = \frac{1}{3} k^2 \frac{u(z)^3}{k^2 + 1} = 0,667^2 \frac{(0,9015 - 0,0376 \cdot z)^3}{3 \cdot 1,202} =$$

$$= 0,0822 \cdot (0,9015 - 0,0376 \cdot z)^3.$$

Отрезки, отсекаемые нейтральной линией на осях координат равны:

$$a_{x}(z) = -\frac{i_{y}^{2}(z)}{x_{0}} = -\frac{0,0822 \cdot (0,9015 - 0,0376 \cdot z)^{3}}{0,125} =$$

= -0,6576 \cdot (0,9015 - 0,0376 \cdot z)^{3};
$$a_{y}(z) = -\frac{i_{x}^{2}(z)}{y_{0}} = -\frac{0,2774 \cdot (0,9015 - 0,0376 \cdot z)^{3}}{0,1875} =$$

= -1,4795 \cdot (0,9015 - 0,0376 \cdot z)^{3}.

В итоге, в верхнем сечении, когда z = H = 12 м $a_x(12) = -0,0600$ м; $a_y(12) = -0,1351$ м;

в среднем сечении, когда
$$z = \frac{H}{2} = 6$$
 м
 $a_x(6) = -0,2031$ м; $a_y(6) = -0,5177$ м;

в нижнем сечении, когда z = H = 0,0 м

$$a_x(0) = -0,4817 \text{ m}; a_y(0) = -1,0837 \text{ m}.$$

На рис. 2 показано положение нейтральной линии в верхнем, среднем и нижнем сечениях колонны.

Нижнее сечение

Рисунок 2 – Положение нейтральной линии в верхнем, среднем и нижнем сечениях колонны

Ядро сечения, построенное в верхнем, среднем и нижнем сечениях колонны показано на рис. 3.

- верхнее сечение колонны
$$(z = H = 12 \text{ м})$$
:
т.1: $x_0 = 0 \text{ м}$; $y_0 = 0,0675 \text{ м}$;
т.2: $x_0 = 0,0300 \text{ м}$; $y_0 = 0 \text{ M}$;
т.3: $x_0 = 0 \text{ M}$; $y_0 = -0,0675 \text{ M}$;
т.4: $x_0 = -0,0300 \text{ M}$; $y_0 = 0 \text{ M}$.
 $a_x = -\infty \text{ M}, a_y = -0,375 \text{ M}$.
 $x_0 = -\frac{i_y^2}{a_x} = 0 \text{ M}$;
 $y_0 = -\frac{i_x^2}{a_y} = -\frac{0,2774 \cdot (0,9015 - 0,0376 \cdot 12)^3}{-0,375} = 0,0675 \text{ M}$.

 $a_x = -0.25 \text{ M}, a_y = -\infty \text{ M}.$ $x_0 = -\frac{i_y^2}{a} = -\frac{0.0822 \cdot (0.9015 - 0.0376 \cdot 12)^3}{-0.25} = 0.0300 \,\mathrm{m};$ $y_0 = -\frac{i_x^2}{a_y} = 0$ м. $a_x = -\infty \text{ M}, a_y = 0,375 \text{ M}.$ $x_0 = -\frac{i_y^2}{a} = 0$ M; $y_0 = -\frac{i_x^2}{a_y} = -\frac{0.2774 \cdot (0.9015 - 0.0376 \cdot 12)^3}{0.375} = -0.0675 \,\mathrm{m}.$ $a_x = 0,25 \text{ M}, a_y = -\infty \text{ M}.$ $x_0 = -\frac{i_y^2}{a_y} = -\frac{0,0822 \cdot (0,9015 - 0,0376 \cdot 12)^3}{0,25} = -0,0300 \text{ m};$ $y_0 = -\frac{i_x^2}{a_x} = 0$ M. - среднее сечение $\left(z = \frac{H}{2} = 6 \text{ м}\right)$: т.1: *x*₀ = 0 м; у₀ = 0,1521 м; т.2: $x_0 = -0,0677$ м; $y_0 = 0$ м; т.3: $x_0 = 0$ м; $y_0 = -0,1521$ м; т.4: *x*₀ = 0,0677 м; у₀ = 0 м. $a_x = -\infty \text{ M}, a_y = -0,56375 \text{ M}.$ $x_0 = -\frac{i_y^2}{a} = 0$ M; $y_0 = -\frac{i_x^2}{a} = -\frac{0,2774 \cdot (0,9015 - 0,0376 \cdot 6)^3}{-0.56375} = 0,1521 \,\mathrm{m}.$ $a_x = -0.375 \text{ M}, a_y = -\infty \text{ M}.$

$$x_0 = -\frac{i_y^2}{a_x} = -\frac{0,0822 \cdot (0,9015 - 0,0376 \cdot 6)^3}{-0,375} = 0,0677 \text{ m};$$

$$y_0 = -\frac{i_x^2}{a_y} = 0 \text{ m}.$$

 $a_x = -\infty$ м, $a_y = 0,56375$ м.

$$x_0 = -\frac{i_y^2}{a_x} = 0 \text{ m};$$

$$y_0 = -\frac{i_x^2}{a_y} = -\frac{0.2774 \cdot (0.9015 - 0.0376 \cdot 6)^3}{0.56375} = -0.1521 \text{ m}.$$

$$a_x = 0,375 \text{ M}, a_y = -\infty \text{ M}.$$

$$x_0 = -\frac{i_y^2}{a_x} = -\frac{0,0822 \cdot (0.9015 - 0.0376 \cdot 6)^3}{0.375} = -0,0677 \text{ M};$$

$$y_0 = -\frac{i_x^2}{a_y} = 0 \text{ M}.$$
- нижнее сечение (z = 0 м):
T.1: x_0 = 0 m; y_0 = 0,2710 m;
T.2: x_0 = 0,1204 m; y_0 = 0 m;
T.3: x_0 = 0 m; y_0 = -0,2710 m;
T.4: x_0 = -0,1204 m; y_0 = 0 m.
a_x = -\infty \text{ M}, a_y = -0,75 \text{ M}.
$$x_0 = -\frac{i_y^2}{a_x} = 0 \text{ M};$$

$$y_0 = -\frac{i_x^2}{a_y} = -\frac{0,2774 \cdot (0.9015 - 0.0376 \cdot 0)^3}{-0.75} = 0,2710 \text{ M}.$$

$$a_x = -0.5$$
 м, $a_y = -\infty$ м.
 $x_0 = -\frac{i_y^2}{a_x} = -\frac{0.0822 \cdot (0.9015 - 0.0376 \cdot 0)^3}{-0.5} = 0.1204$ м;

$$y_0 = -\frac{i_x^2}{a_y} = 0 \,\mathrm{M}.$$

 $a_x = -\infty \text{ M}, a_y = 0,75 \text{ M}.$ $x_0 = -\frac{i_y^2}{a_x} = 0 \text{ M};$ $y_0 = -\frac{i_x^2}{a_y} = -\frac{0,2774 \cdot (0,9015 - 0,0376 \cdot 0)^3}{0,75} = -0,2710 \text{ M}.$

 $a_x = 0,5 \text{ M}, a_y = -\infty \text{ M}.$

$$x_0 = -\frac{i_y^2}{a_x} = -\frac{0,0822 \cdot (0,9015 - 0,0376 \cdot 0)^3}{0,5} = -0,1204 \text{ m};$$

$$y_0 = -\frac{i_x^2}{a_y} = 0 \text{ m}.$$

Нижнее сечение

Рисунок 3 – Ядро сечения в верхнем, среднем и нижнем сечениях

Оценим несущую способность стержня по верхнему, среднему и нижнему сечениям колонны. Судя по положению нейтральной линии (рис. 2) во всех

сечениях опасной точкой по сжимающим нормальным напряжениям будет правый верхний угол, а опасной точкой по растягивающим нормальным напряжениям будет левый нижний угол поперечного сечения.

- Верхнее сечение колонны (z = H = 12 м).Сжатая зона: $x_{\text{max}}^{(-)} = 0.25 \text{ м}; y_{\text{max}}^{(-)} = 0.375 \text{ м}.$ $F^{(-)} \le \frac{-R_{\sigma}^{(-)}\gamma_d}{\frac{1}{A(z_{\text{on}})} + \frac{y_0 y_{\text{max}}^{(-)}}{i_x(z_{\text{on}})} + \frac{x_0 x_{\text{max}}^{(-)}}{i_y(z_{\text{on}})} = -5 \cdot 10^7 \cdot 1 \cdot \left[\frac{1}{2,001 - 0.0835 \cdot 12} + \frac{0.1875 \cdot 0.375}{0.6155 \cdot (0.9015 - 0.0376 \cdot 12)^4} + \frac{0.125 \cdot 0.25}{0.2738 \cdot (0.9015 - 0.0376 \cdot 12)^4}\right]^{-1} = -7.6 \text{ кH}.$ Растянутая зона: $x_{\text{max}}^{(+)} = -0.25 \text{ м}; y_{\text{max}}^{(+)} = -0.375 \text{ м}.$ $F^{(+)} \le \frac{R_{\sigma}^{(+)}\gamma_d}{\frac{1}{A(z_{\text{on}})} + \frac{y_0 y_{\text{max}}^{(+)}}{i_x(z_{\text{on}})} + \frac{x_0 x_{\text{max}}^{(+)}}{i_y(z_{\text{on}})} = 5 \cdot 10^6 \cdot 1 \cdot \left[\frac{1}{2,001 - 0.0835 \cdot 12} - \frac{0.1875 \cdot 0.375}{0.6155 \cdot (0.9015 - 0.0376 \cdot 12)^4} - \frac{0.125 \cdot 0.25}{0.2738 \cdot (0.9015 - 0.0376 \cdot 12)^4}\right]^{-1} = -1.1 \text{ кH}.$

- Среднее сечение колонны $\left(z = \frac{H}{2} = 6 \text{ м}\right)$. Сжатая зона: $x_{\text{max}}^{(-)} = 0,3775 \text{ м}; y_{\text{max}}^{(-)} = 0,56375 \text{ м}.$ $F^{(-)} \leq \frac{-R_{\sigma}^{(-)}\gamma_d}{\frac{1}{A(z_{\text{оп}})} + \frac{y_0 y_{\text{max}}^{(-)}}{i_x(z_{\text{оп}})} + \frac{x_0 x_{\text{max}}^{(-)}}{i_y(z_{\text{оп}})} = -5 \cdot 10^7 \cdot 1 \cdot \left[\frac{1}{2,001 - 0,0835 \cdot 6} + \frac{0,1875 \cdot 0,56375}{i_x(z_{\text{оп}})} + \frac{x_0 x_{\text{max}}^{(-)}}{i_y(z_{\text{оп}})}\right]^{-1} = -21,5 \text{ кH}.$

Растянутая зона: $x_{\text{max}}^{(+)} = -0,3775 \text{ м}; y_{\text{max}}^{(+)} = -0,56375 \text{ м}.$

$$F^{(+)} \leq \frac{R_{\sigma}^{(+)} \gamma_d}{\frac{1}{A(z_{o\Pi})} + \frac{y_0 y_{max}^{(+)}}{i_x(z_{o\Pi})} + \frac{x_0 x_{max}^{(+)}}{i_y(z_{o\Pi})}} = 5 \cdot 10^6 \cdot 1 \cdot \left[\frac{1}{2,001 - 0,0835 \cdot 6} - \frac{0,1875 \cdot 0,56375}{0,6155 \cdot (0,9015 - 0,0376 \cdot 6)^4} - \frac{0,125 \cdot 0,3775}{0,2738 \cdot (0,9015 - 0,0376 \cdot 6)^4}\right]^{-1} = -5,2 \text{ kH}.$$

- Нижнее сечение колонны (z = 0 м).Сжатая зона: $x_{\text{max}}^{(-)} = 0,5 \text{ м}; y_{\text{max}}^{(-)} = 0,75 \text{ м}.$ $F^{(-)} \leq \frac{-R_{\sigma}^{(-)}\gamma_d}{\frac{1}{A(z_{\text{оп}})} + \frac{y_0 y_{\text{max}}^{(-)}}{i_x(z_{\text{оп}})}} = 5 \cdot 10^7 \cdot 1 \cdot \left[\frac{1}{2,001 - 0,0835 \cdot 0} + \frac{0,1875 \cdot 0,75}{i_y(z_{\text{оп}})} + \frac{0,125 \cdot 0,5}{i_y(z_{\text{оп}})}\right]^{-1} = \frac{1}{0,6155 \cdot (0,9015 - 0,0376 \cdot 0)^4} + \frac{0,125 \cdot 0,5}{0,2738 \cdot (0,9015 - 0,0376 \cdot 0)^4}$

Растянутая зона: $x_{\text{max}}^{(+)} = -0,5$ м; $y_{\text{max}}^{(+)} = -0,75$ м.

$$F^{(+)} \leq \frac{R_{\sigma}^{(+)} \gamma_d}{\frac{1}{A(z_{\text{on}})} + \frac{y_0 y_{\text{max}}^{(+)}}{i_x(z_{\text{on}})} + \frac{x_0 x_{\text{max}}^{(+)}}{i_y(z_{\text{on}})}} = 5 \cdot 10^6 \cdot 1 \cdot \left[\frac{1}{2,001 - 0,0835 \cdot 0} - \frac{0,1875 \cdot 0,75}{0,6155 \cdot (0,9015 - 0,0376 \cdot 0)^4} - \frac{0,125 \cdot 0,5}{0,2738 \cdot (0,9015 - 0,0376 \cdot 0)^4}\right]^{-1} = -26,1 \,\text{kH}.$$

Таким образом, несущая способность колонны определяется по верхнему сечению.

Вычисляем производные в уравнении (4):

$$\frac{\partial A(z)}{\partial z} = -0,0835; \quad \frac{\partial I_x(z)}{\partial z} = -0,0925 \cdot (0,9015 - 0,0376 \cdot z)^3;$$
$$\frac{\partial I_y(z)}{\partial z} = -0,0411 \cdot (0,9015 - 0,0376 \cdot z)^3.$$

Уравнение (4) при этом получает вид:

$$\frac{0,0835}{(2,001-0,0835\cdot z)^2} + \frac{0,2442\cdot y_0y + 0,5482\cdot x_0x}{(0,9015-0,0376\cdot z)^5} = 0.$$
 (13)

Так как $x_0 = 0,125$ м; $y_0 = 0,1875$ м, то уравнение (13) приводится к виду:

$$\frac{0,0835}{\left(2,001-0,0835\cdot z\right)^2} + \frac{0,0458\cdot y + 0,0685\cdot x}{\left(0,9015-0,0376\cdot z\right)^5} = 0.$$
 (14)

Принимая во внимание, что правый верхний угол поперечного сечения,

для которого $x = \frac{1}{2}b(z) = k \frac{u(z)}{\sqrt{k^2 + 1}}; y = \frac{1}{2}h(z) = \frac{u(z)}{\sqrt{k^2 + 1}}$ является опасным по

сжимающим нормальным напряжениям, то уравнение (14) получает вид:

$$\frac{0,0835}{(2,001-0,0835\cdot z)^2} + \frac{0,0458\cdot \frac{u(z)}{\sqrt{k^2+1}} + 0,0685\cdot k\frac{u(z)}{\sqrt{k^2+1}}}{(0,9015-0,0376\cdot z)^5} = 0.$$

Или, поскольку k = 0,667 и $u(z) = 0,9015 - 0,0376 \cdot z$, получаем:

$$\frac{\frac{0,0835}{(2,001-0,0835\cdot z)^2} + \frac{0,0458\cdot\frac{0,9015-0,0376\cdot z}{1,2018} + 0,0685\cdot 0,667\frac{0,9015-0,0376\cdot z}{1,2018}}{(0,9015-0,0376\cdot z)^5} = 0;$$

ИЛИ

$$0,0835 \cdot (0,9015 - 0,0376 \cdot z)^4 + 0,0761 \cdot (2,001 - 0,0835 \cdot z)^2 = 0.$$
(15)

Уравнение (15) не имеет действительных корней. График уравнения (15) показан на рис. 4.

Рисунок 4 – График

Поскольку график (Рис. 4) выражает значение производной $\frac{\partial \sigma_z}{\partial z}$, вычисленной по высоте колонны, причём эта производная монотонно убывающая функция, то функция $\sigma_z(z)$ будет монотонно возрастающей выпуклостью вверх, не имеющей локальных экстремумов. Следовательно, опасным по нормальным сжимающим напряжениям будет верхнее поперечное сечение колонны (z = H).

Принимая во внимание, что левый нижний угол поперечного сечения, для которого $x = -\frac{1}{2}b(z) = -k\frac{u(z)}{\sqrt{k^2+1}}; y = -\frac{1}{2}h(z) = -\frac{u(z)}{\sqrt{k^2+1}}$ является опасным по

растягивающим нормальным напряжениям, то уравнение (14) получает вид:

Или

$$0,0835 \cdot (0,9015 - 0,0376 \cdot z)^4 - 0,0761 \cdot (2,001 - 0,0835 \cdot z)^2 = 0.$$
(16)

График уравнения (16) показан на рис. 5. Поскольку график (Рис. 5) выражает значение производной $\frac{\partial \sigma_z}{\partial z}$, вычисленной по высоте колонны, причём эта производная монотонно возрастающая функция, то функция $\sigma_z(z)$ будет монотонно возрастающей выпуклостью вниз, не имеющей локальных экстремумов.

Рисунок 5 – График

Следовательно, опасным по нормальным сжимающим напряжениям будет верхнее поперечное сечение колонны (z = H).

Таким образом, исследование уравнения (4) показывает, что в данном случае прямоугольной внецентренно сжатой колонны с плавно-переменным сечением и заданной точкой приложения внешней силы, опасным по растягивающим и сжимающим напряжениями будет верхнее поперечное сечение.

Выводы.

1. Положение нейтральной линии во внецентренно сжатой колонне с плавно-переменным сечением зависит от рассматриваемого поперечного сечения.

2. Во внецентренно сжатых колоннах с плавно-переменным сечением ядро сечения увеличивает свои размеры при рассмотрении поперечных сечений от верхнего к нижнему.

3. Во внецентренно сжатых колоннах с плавно-переменным сечением, сечения, опасные по растягивающим и сжимающим нормальным напряжениям могут, вообще говоря, располагаться на разных уровнях, то есть не совпадать.

Библиографический список:

1. Царенко С.Н. Устойчивость конических стоек трубчатого сечения. // Вісник СевНТУ. 2014. № 148. С. 64-68.

2. Улитин Г.М., Царенко С.Н. Устойчивость упругого весомого стержня переменной изгибной жесткости, моделирующего конструкции башенного типа. // Строительная механика и расчет сооружений. 2015. № 6 (263). С. 36-40.

3. Улитин Г.М., Царенко С.Н. Изгибные колебания стержня с переменной жесткостью и распределенной массой. // Прикладная математика и механика. 2015. Т. 79. № 6. С. 817-823.

ПЕРЕВОДНАЯ ВЕРСИЯ:

Ulitin G.M., Tsarenko S.N. Flexural vibrations of a rod of variable stiffness and distributed mass. // Journal of Applied Mathematics and Mechanics. 2015. T. 79. № 6. C. 572-576.

4. Каган-Розенцвейг Л.М. Метод определения усилий в упругих сжатоизогнутых стержнях переменного сечения. упрощенное уравнение изгиба (II). // Вестник гражданских инженеров. 2016. № 1 (54). С. 75-81.

5. Каган-Розенцвейг Л.М. О продольно-поперечном изгибе консольного стержня переменного сечения. // Вестник гражданских инженеров. 2007. № 4 (13). С. 14-17.

6. Готман А.Л., Соколов Л.Я. Расчет комбинированных свай переменного сечения на горизонтальную нагрузку. // Вестник Пермского национального исследовательского политехнического университета. Строительство и архитектура. 2014. № 2. С. 79-90.

7. Готман А.Л., Соколов Л.Я. Исследования работы комбинированных свай переменного сечения на горизонтальную нагрузку и их расчет. // Известия высших учебных заведений. Строительство. 2013. № 6 (654). С. 105-114.

8. Исаев А.В., Вахтель Р.Р., Закиров Р.А. Численные исследования напряженно-деформированного состояния стальной рамы переменного сечения с расщеплением карнизного узла. // Известия Казанского государственного архитектурно-строительного университета. 2017. № 4 (42). С. 159-166.

9. Бакушев С.В., Зарипова Г.М. Оценка прочности и жёсткости стоек переменного сечения. // Актуальные проблемы механики в современном строительстве [Текст]: сб. науч. статей. Международ. науч.-техн. конф. – Пенза: ПГУАС, 2014. – 10-21 с.

10. Бакушев С.В., Зарипова Г.М. К вопросу о расчёте стержней переменного сечения, работающих на изгиб. // Актуальные проблемы механики в современном строительстве [Текст]: Материалы III Международ. науч.-техн. конф. – Пенза: ПГУАС, 2014. – 4-9 с.

11. Бакушев С.В., Зарипова Г.М. К вопросу об изгибе стержня переменного сечения. // Актуальные проблемы механики в современном строительстве [Текст]: Материалы III Международ. науч.-техн. конф. – Пенза: ПГУАС, 2014. – 9-21 с.