# ВЫСОКОЭФФЕКТИВНЫЙ МЕТОД ВОССТАНОВЛЕНИЯ ПОВРЕЖДЕННЫХ НЕСУЩИХ СИСТЕМ КИРПИЧНЫХ ЗДАНИЙ

## Артюшин Дмитрий Викторович,

Пензенский государственный университет архитектуры и строительства, г. Пенза,

кандидат технических наук, доцент, декан Инженерно-строительного института.

### Ключникова Ирина Алексеевна,

Пензенский государственный университет архитектуры и строительства, г. Пенза,

магистрант.

#### Аннотация

В статье рассматривается эффективный метод восстановления поврежденных несущих систем кирпичных зданий, позволяющий сохранить их конструктивную схему. Предлагаются технические решения, обеспечивающие дальнейшую безопасную эксплуатацию несущих конструкций и здания в целом.

**Ключевые слова:** кирпичные здания, поврежденная несущая система, реконструкция, усиление конструкций, безопасная эксплуатация.

# HIGHLY EFFICIENT RECOVERY METHOD DAMAGED LOAD-BEARING SYSTEMS OF BRICK BUILDINGS

# Artyushin Dmitry Viktorovich,

Penza State University of Architecture and Construction, Penza,

Candidate of Sciences, Associate Professor, Dean of the Civil Engineering Institute.

# Klyuchnikova Irina Alekseevna,

Penza State University of Architecture and Construction, Penza, undergraduate student.

#### **Abstract**

The article discusses an effective method for restoring damaged load-bearing systems of brick buildings, which makes it possible to preserve their structural design. Technical solutions are proposed that ensure the further safe operation of load-bearing structures and building in general.

**Keywords:** brick buildings, damaged bearing system, reconstruction, reinforcement of structures, safe exploitation.

При реконструкции кирпичных зданий, в особенности являющихся памятниками архитектуры, как правило, требуется индивидуальный подход к их усилению, позволяющий сохранить несущую систему при обеспечении ее эксплуатационной способности. Использование предлагаемого метода наиболее эффективно при восстановлении несущих систем зданий, находящихся в аварийном состоянии по причине прогрессирующего разрушения или ошибок, допущенных при производстве строительно-монтажных работ, характеризуемых большими деформациями конструкций. При разработке данного метода, позволяющего сохранить конструктивную схему и кирпичные конструкции старинных зданий, решались задачи повышения эффективности и надежности восстановления поврежденных и аварийных несущих систем, представляющих архитектурную и историческую ценность.

Главная особенность предлагаемого метода восстановления целостности поврежденной несущей системы заключается в одновременном усилении основания фундаментов опор-столбов стен И многосекционными трубобетонными сваями, что позволяет подключить в работу отдельные части и элементы поврежденной, «разрезанной» несущей системы здания. Кирпичные стены, столбы, своды и арки «подтягиваются» с помощью силовой системы, использующей реакцию грунта основания, обеспечивая совместную работу конструкций и пространственную жесткость здания в целом. Это позволяет не только поднять поврежденные конструкции, подключив их в работу и деформации прогибов и смещений, ликвидировав НО И воспринять

дополнительную возможную нагрузку от надстраиваемого этажа. Восстановление совместной работы конструкций и жесткости разрезанной несущей системы таким методом целесообразно выполнять в комплексе с усилением отдельных кирпичных конструкций (например, стальными обоймами) с целью предотвращения их локального разрушения во время подъема.

Рассматриваемый метод был применен сотрудниками ПГУАС при реконструкции здания аптеки, расположенной по ул. Московской, 21 в г. Пензе [1]. Построенное в первой половине XIX века здание аптеки относится к архитектурному наследию города и является капитальным строением с несущей системой из кирпичной кладки. Несущая система здания формируется из наружных и внутренних кирпичных стен и массивных опор-столбов, монолитно связанных с пространственными крестовыми сводами и арками перекрытий. Здание одноэтажное с подвальным помещением, имеет шесть пролетов по длине и два пролета по ширине. Габаритные размеры здания в плане составляют 19×27 м; максимальный пролет – 6,8 м. Высота здания около 12 м. Надземная часть несущей системы здания, состоит из кирпичных стен, арочных цилиндрических оболочек и деревянного перекрытия. Фундаменты бутовые, кровля стропильная. Общий вид здания (главный фасад со стороны ул. Московской) показан на рисунке 1.

В результате ошибок, допущенных при производстве строительных работ по реконструкции подвального помещения и частичной замене фундаментов здания, были полностью нарушены опорные узлы двух опор-столбов несущей системы. Произведено увеличение высоты подвального помещения путем удаления слоя грунта глубиной около 1,5 м. Полностью демонтированы бутовые фундаменты из-под двух массивных опорных столбов сводов. В результате монолитные узлы сопряжения кирпичных конструкций стен, опорстолбов и сводов перекрытий получили повреждения, а массивные опорыстолбы оказались в подвешенном состоянии. Произошел их отрыв по периметру приопорных зон пространственных крестовых сводов и арочных

оболочек перекрытий здания, рисунок 2. Несущая система здания оказалась разрезанной на три части. Совместная работа отдельных частей обеспечивалась только за счет неразрушенных зон сводов перекрытия, а также сил зацепления в штрабообразных трещинах, не гарантирующих дальнейшую безопасную эксплуатацию здания. Внутренняя часть разрезанной несущей системы имела грибообразную форму и состояла из двух массивных опор-столбов с развитым монолитным узлом сопряжения с перекрытиями. Внешняя часть имела коробчато-консольную форму и состояла из несущих внешних стен с пилястрами, монолитно связанными с перекрытиями. Пространственная жесткость здания в целом оказалась не обеспеченной. Возникла реальная угроза физического обрушения конструкций здания.



Рисунок 1 – Общий вид здания со стороны ул. Московской

Для стабилизации положения поврежденных конструкций здания были разработаны ПО проектные решения восстановлению целостности работоспособности узлов сопряжения опор-столбов с фундаментами [2-4]. Проект реконструкции предполагал сохранение несущей системы здания с надстройкой мансардного этажа, усилением основания фундаментов трубобетонными многосекционными сваями и поврежденных кирпичных опорстолбов и арок перекрытия стальными обоймами. Восстановительные работы выполнялись в следующем порядке:



Рисунок 2 — Схемы развития (a) и общий вид трещин в сводах и арках перекрытия подвального помещения (б)

 на основание из предварительно уложенных шпал устанавливались временные раздвижные стальные стойки трубчатого сечения и закреплялись в распор с арками перекрытия, рисунок 3;

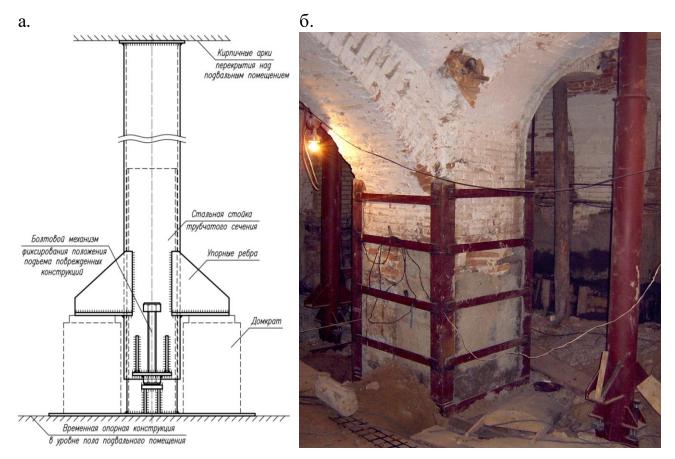



Рисунок 3 — Временные стальные стойки силовой подъемной системы а — конструкция стойки; б — фрагмент восстановительных работ

- на основание из втрамбованного в грунт щебня под своды перекрытия подводились временные опоры;
- методом поэтапного поддомкрачивания подключались в работу временные стальные стойки, достигнутое усилие фиксировалось болтами, предусмотренными конструкцией стоек;
- в кирпичных опорах-столбах устраивалась штраба под ростверк усиления;
- устанавливались арматурные каркасы и бетонировался ростверк,
  рисунок 4;

 в зонах задавливания многосекционных свай отрывались приямки под домкраты;



Рисунок 4 – Монолитный ростверк усиления фундаментов

- после набора бетоном ростверка прочности не менее 80% от проектной производилось задавливание многосекционных трубобетонных свай усиления (задавливание свай сопровождалось подъемом «оторвавшихся» элементов несущей системы и включением их в работу);
- для вывешивания несущей системы здания монтировались винтовые подъемные системы, позволяющие выбрать пластические деформации грунта основания;
- после стабилизации усилий винтовые системы заменялись вертикальными стержнями (стойками) и производилось бетонирование оголовков свай.

Усиление фундаментов стен осуществлялось аналогично, рисунок 5.

Поврежденные арки подвального перекрытия усиливались стальными обоймами, рисунок 6.

В результате проведенных восстановительных работ поврежденные конструкции были снова подключены в работу несущей системы подвального помещения, а также сохранена монолитная кирпичная система здания в целом, представляющего собой исторический памятник городской архитектуры.

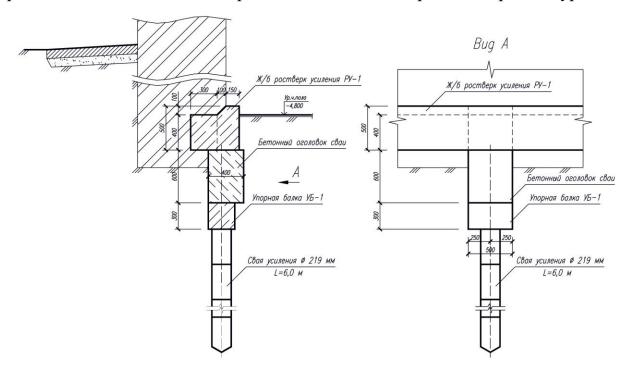



Рисунок 5 — Схема усиления фундаментов наружных стен многосекционными трубобетонными сваями



Рисунок 6 — Общий вид усиления стальными обоймами поврежденных арок подвального перекрытия и опорных столбов сводов

## Библиографический список:

- 1. Баранова Т.И. Реконструкция памятника архитектуры XIX века (здания аптеки №1) в городе Пенза с уникальной несущей системой из монолитной кирпичной кладки: Т.И. Баранова, А.И. Еремкин, В.С. Глухов, И.С. Гучкин, Д.В. Попов // Вестник Отделения строительных наук Российской академии архитектуры и строительных наук. 2006. №10. С. 38-42.
- 2. Муленкова В.И. Расчет и конструирование усиления железобетонных и каменных конструкций / В.И. Муленкова, Д.В. Артюшин. Пенза: ПГУАС, 2014. 117 с.
- 3. Артюшин Д.В. Расчет и конструирование каменных и армокаменных конструкций / Д.В. Артюшин, А.В. Туманов. Пенза: ПГУАС, 2013. 118 с.
- 4. Гучкин И.С. Проектирование усиления однопролетных железобетонных балок подведением промежуточной жесткой опоры: И.С. Гучкин, С.Г. Багдоев, Д.В. Артюшин // Региональная архитектура и строительство. 2009. №1. С. 82-86.