МЕТОДИКА ПОСТРОЕНИЯ МАТРИЦ ЖЁСТКОСТИ ПО ДИФФЕРЕНЦИАЛЬНОМУ УРАВНЕНИЮ

Евсеев Александр Евгеньевич,

Пензенский государственный университет архитектуры и строительства, г. Пенза.

кандидат технических наук, доцент кафедры «Механика».

Евсеев Илья Александрович,

Национальный исследовательский Московский государственный строительный университет, г. Москва, магистрант.

Машин Валерий Михайлович,

ООО «Виола», г. Пенза,

кандидат технических наук, главный конструктор.

Аннотация

В статье изложена идея построения матрицы жёсткости с использованием дифференциального уравнения равновесия в перемещениях. Приведен пример построения матрицы жесткости стержня, работающего на изгиб. Проведено сравнение полученных результатов с матрицей реакций, полученной из общих уравнений строительной механики.

Ключевые слова: метод конечных элементов, матрица жесткости.

METHOD FOR FORMATION STIFFNESS MATRIXS BY DIFFERENTIAL EQUATION

Evseev Alexander Evgenievich,

Penza State University of Architecture and Construction, Penza,

Candidate of Sciences, Associate Professor of the department "Mechanics".

Evseev Ilya Alexandrovich,

National Research Moscow State University of Civil Engineering, Moscow,

undergraduate student.

Mashin Valery Mikhailovich,

LLC "Viola", Penza,

Candidate of Sciences, chief designer.

Abstract

The article describes the idea of formation a stiffness matrix using the differential equilibrium equation in displacements. An example of constructing a stiffness matrix for a bending bar is given. The results obtained are compared with

the reaction matrix obtained from the general equations of structural mechanics.

Keywords: finite element method, stiffness matrix.

Одним из наиболее мощных методов расчёта конструкций и сооружений является метод конечных элементов (МКЭ), приводящий континуальную систему к дискретной. Он обладает значительной универсальностью и алгоритмичностью в сравнении с другими численными методами зарекомендовал себя как достаточно надёжный аппарат для расчёта сложных элементов конструкций и сооружений на статические и динамические воздействия в линейной и нелинейной постановках. Как известно, реализация МКЭ требует предварительного построения матриц жёсткости конечных элементов (КЭ), на которые разбивается рассматриваемая конструкция.

В настоящей работе предлагается единый подход к построению матриц жёсткости упругих стержневых конечных элементов для деформационного расчёта изгибаемых конструкций. При этом рассматривается точный способ построения матриц, основанный на использовании дифференциального уравнения равновесия в перемещениях.

Идею построения матриц жёсткости стержня с использованием дифференциального уравнения равновесия в перемещениях предложил Н.Н. Шапошников. Продемонстрируем её на примере стержня, работающего на

изгиб. Дифференциальное уравнение изгиба такого стержня при узловой нагрузке имеет вид:

$$\frac{\mathrm{d}^4 v}{\mathrm{d}x^4} = 0\,,\tag{1}$$

где v=v(x) — прогиб стержня.

Решение уравнения (1) найдём, решив соответствующее характеристическое уравнение и определив его корни. Корни характеристического уравнения равны нулю. Тогда общее решение уравнения (1) имеет вид:

$$v = a_1 + a_2 \cdot x + a_3 \cdot x^2 + a_4 \cdot x^3 = \vec{H}^T \cdot \vec{a},$$
 (2)

где $\vec{H}^T = \begin{bmatrix} 1 & x & x^2 & x^3 \end{bmatrix}$ — вектор линейно-независимых решений уравнения (1), $\vec{a}^T = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \end{bmatrix}$ — вектор произвольных постоянных.

Запишем выражение (2) и производные от него в матричной форме

$$\begin{bmatrix} v \\ v' \\ v'' \\ v''' \end{bmatrix} = \begin{bmatrix} 1 & x & x^2 & x^3 \\ 0 & 1 & 2 \cdot x & 3 \cdot x^2 \\ 0 & 0 & 2 & 6 \cdot x \\ 0 & 0 & 0 & 6 \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_3 \end{bmatrix}$$

Перемещения концевых сечений стержня будем характеризовать вектором

$$\vec{z} = [v_{\mu} \ \phi_{\mu} \ v_{\kappa} \ \phi_{\kappa}]^{T}. \tag{3}$$

Двойственным к вектору (3) будет вектор реакций концов стержня

$$\vec{r} = \begin{bmatrix} r_{vH} & r_{\phi H} & r_{vK} & r_{\phi K} \end{bmatrix}^T. \tag{4}$$

Подставим координаты начала (x=0) и конца (x=l) стержня в выражение (2) и в первую производную от него

$$\vec{z} = \begin{bmatrix} v_{H} \\ \varphi_{H} \\ v_{K} \\ \varphi_{K} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & l & l^{2} & l^{3} \\ 0 & 1 & 2 \cdot l & 3 \cdot l^{2} \end{bmatrix} \cdot \vec{a}$$
 (5)

или

$$\vec{z} = L \cdot \vec{a} \,. \tag{6}$$

Отсюда

$$\vec{a} = L^{-1} \cdot \vec{z} \,. \tag{7}$$

Используя известные дифференциальные зависимости внутренних усилий от перемещений

$$M = E \cdot J \cdot \frac{\mathrm{d}^2 v}{\mathrm{d}x^2}; \quad Q = E \cdot J \cdot \frac{\mathrm{d}^3 v}{\mathrm{d}x^3}, \tag{8}$$

запишем

$$\begin{bmatrix} Q \\ M \end{bmatrix} = E \cdot J \cdot \begin{bmatrix} 0 & 0 & 0 & 6 \\ 0 & 0 & 2 & 6 \cdot x \end{bmatrix} \cdot \vec{a} . \tag{9}$$

Подставляя в (9) координаты начала (x=0) и конца (x=l) стержня, получим значения поперечных сил и моментов в этих сечениях. Компоненты вектора \vec{r} (4) можно выразить через эти усилия

$$\vec{r} = \begin{bmatrix} r_{v_H} \\ r_{\varphi_H} \\ r_{v_K} \\ r_{\varphi_K} \end{bmatrix} = \begin{bmatrix} Q_H \\ -M_H \\ -Q_K \\ M_K \end{bmatrix} = E \cdot J \cdot \begin{bmatrix} 0 & 0 & 0 & 6 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -6 \\ 0 & 0 & 2 & 6 \cdot l \end{bmatrix} \cdot \vec{a}$$
 (10)

ИЛИ

$$\vec{r} = L_1 \cdot \vec{a} \,. \tag{11}$$

Подставим (7) в (11)

$$\vec{r} = L_1 \cdot L^{-1} \cdot \vec{z} = r \cdot \vec{z} \,, \tag{12}$$

где
$$r = L_1 \cdot L^{-1}$$
 — изгибная матрица жёсткости стержня, (13)

записанная в местной системе координат.

Проведем вычисление изгибной матрицы жёсткости стержня.

Из (5) и (6) матрица L имеет вид

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & l & l^2 & l^3 \\ 0 & 1 & 2 \cdot l & 3 \cdot l^2 \end{bmatrix},$$

обернув которую получим

$$L^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \frac{-3}{l^2} & \frac{-2}{l} & \frac{3}{l^2} & \frac{-1}{l} \\ \frac{2}{l^3} & \frac{1}{l^2} & \frac{-2}{l^3} & \frac{1}{l^2} \end{bmatrix}.$$

Из (10) и (11) имеем матрицу

$$L_{1} = E \cdot J \cdot \begin{bmatrix} 0 & 0 & 0 & 6 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -6 \\ 0 & 0 & 2 & 6 \cdot l \end{bmatrix}.$$

Тогда в соответствии с (11)-(13) получим

$$= E \cdot J \cdot \begin{bmatrix} 0 & 0 & 0 & 6 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -6 \\ 0 & 0 & 2 & 6 \cdot l \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & -2 & \frac{3}{l^2} & \frac{-1}{l} \\ \frac{2}{l^3} & \frac{1}{l^2} & \frac{-2}{l^3} & \frac{1}{l^2} \end{bmatrix} =$$

$$= E \cdot J \cdot \begin{bmatrix} \frac{12}{l^3} & \frac{6}{l^2} & -\frac{12}{l^3} & \frac{6}{l^2} \\ \frac{6}{l^2} & \frac{4}{l} & -\frac{6}{l^2} & \frac{2}{l} \\ -\frac{12}{l^3} & -\frac{6}{l^2} & \frac{12}{l^3} & -\frac{6}{l^2} \\ \frac{6}{l^2} & \frac{2}{l} & -\frac{6}{l^2} & \frac{4}{l} \end{bmatrix}$$

Полученная матрица реакций полностью совпадает с той, которая получена из общих уравнений строительной механики [1, 2]. Этот факт подтверждает достоверность полученных результатов.

В дальнейшем Н.Н. Шапошников показал, что изложенная методика построения матрицы жёсткости может быть использована для более сложных случаев напряжённо-деформированного состояния стержня.

Библиографический список:

- 1. Дарков А.В., Шапошников Н.Н. Строительная механика. М.: Высшая школа, 1986. 607 с.
- 2. Смирнов А.Ф., Александров А.В., Лащеников Б.Я., Шапошников Н.Н. Строительная механика. Стержневые системы. М.: Стройиздат, 1981. 512 с.