УСТРОЙСТВО ШПУНТОВОГО ОГРАЖДЕНИЯ КОТЛОВАНОВ И ПОДПОРНЫХ СТЕН В СЛОЖНЫХ ГИДРОГЕОЛОГИЧЕСКИХ УСЛОВИЯХ ГОРОДСКОЙ ЗАСТРОЙКИ

Тарасеева Нелли Ивановна,

Пензенский государственный университет архитектуры и строительства, г. Пенза,

кандидат технических наук, доцент кафедры «Геотехника и дорожное строительство».

Андрианов Константин Анатольевич,

Тамбовский государственный технический университет, г. Тамбов кандидат технических наук, доцент, заведующий кафедрой "Городское строительство и автомобильные дороги".

Хрипунова Марина Станиславовна,

Пензенский государственный университет архитектуры и строительства, г. Пенза,

магистрант.

Антонов Артём Баяндурович,

Пензенский государственный университет архитектуры и строительства, г. Пенза,

магистрант.

Аннотация

Строительство жилых домов и торговых центров с подземным паркингом в стеснённых условиях городской застройки имеет ряд конструктивных и технологических особенностей. В статье рассмотрен вариант устройства подпорной стенки из элементов, альтернативных зачастую используемым шпунтам типа Ларсен Л5.

Ключевые слова: подпорные стенки, глубокие котлованы, конструкции шпунтового ограждения, Ларсен Л5, забивные сваи

DEVICE OF PIPE FACING OF BOTTLES AND RETAINING WALLS IN DIFFICULT HYDROGEOLOGICAL CONDITIONS OF URBAN DEVELOPMENT

Taraseeva Nelli Ivanovna,

Penza State University of Architecture and Construction, Penza,

Candidate of Sciences, Associate Professor of the department "Geotechnics and road construction".

Andrianov Konstantin Anatolyevich,

Tambov State Technical University

Candidate of Technical Sciences, Associate Professor, Head of the department "Urban Construction and Highways"

Khripunova Marina Stanislavovna,

Penza State University of Architecture and Construction, Penza, undergraduate student.

Antonov Artem Bayandurovich,

Penza State University of Architecture and Construction, Penza, undergraduate student.

Annotation

The construction of residential buildings and shopping centers with underground parking in the cramped conditions of urban development has a number of design and technological features. The article discusses a variant of the device of a retaining wall from elements that are alternative to the often used sheet piles of the Larsen L5 type.

Keywords: retaining walls, deep pits, sheet piling structures, Larsen L5, driven piles.

Ежегодное увеличение спроса на подземные многоуровневые парковки, расположенные под жилыми и торговыми комплексами, является актуальным вопросом современной застройки и планировки. Особенно остро эта проблема

проявляется в крупных городах, где практически каждый дом или торговый центр должен иметь свою автостоянку.

Решение подобной задачи в условиях существующей застройки достаточно усложнено, однако на стадии проектирования нового объекта возможно предусмотреть подземный паркинг, что имеет конструктивные и технологические особенности [1]. Устройство глубоких котлованов в условиях плотной городской застройки всегда считалось одной из наиболее сложных задач поземного строительства. В первую очередь это касается невозможности устройства ограждений котлованов с помощью забивки свай или шпунта из-за негативного динамического воздействия на окружающие здания. При отрывке котлованов в черте города необходимо учитывать указанное воздействие на прилегающую застройку и инженерные коммуникации [2].

Основные типы ограждающих конструкций, применяемых для крепления бортов котлованов: шпунт из труб и металлический шпунт (типа Ларсена); ограждение котлованов из буронабивных свай; «стена в грунте».

Практика строительства показывает, ЧТО ограждение котлована конструкцией шпунтов из труб является наиболее экономичным и заключается в погружении в пробуренные скважины металлических труб диаметром 300 ÷ 600 мм, как правило, бывших в употреблении (при сохранении прочностных параметров удешевление происходит за счёт расходного материала). По мере разработки грунта В котловане между металлическими элементами устанавливается забирка из деревянных досок, препятствующая осыпанию грунта [3].

Ограничения области применения шпунтового ограждения (ШО) связаны с параметрами котлована, в частности, глубина должна быть не более 5 м. ШО из труб не является водонепроницаемым, поэтому для использования в водонасыщенных грунтах требуется выполнять водопонижение. Последнее может привести к дополнительным осадкам зданий прилегающей застройки.

Металлические шпунтовые ограждения котлованов (типа Ларсена) широко используются в гидротехническом строительстве в водонасыщенных

грунтах. Замковое соединение шпунтин защищает от поступления воды в котлован. Наиболее распространенными формами являются металлические шпунты U-, Z-, H- образного поперечного сечения. Установка шпунта в грунт осуществляется обычно вибропогружением (рис. 1, 2).

Рисунок 1 — Устройство металлического шпунтового ограждения: канал Грибоедова, г. Санкт-Петербург

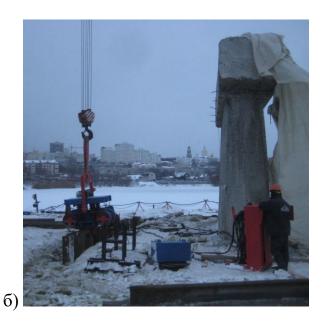


Рисунок 2 — Устройство шпунтового ограждения. Мост через реку Сура: а — установка шпунта, б - вибропогружение

Устройство ограждений котлованов по технологии «стена в грунте» состоит в отрывке глубоких узких траншей под защитой глинистого раствора с последующим бетонированием методом вертикального перемещения трубы (ВПТ). Траншеи разрабатываются отдельными захватками, длина которых в плане соответствует размерам навесного оборудования и составляет обычно 2 — 3 м.

В данной статье рассмотрен вариант технологии устройства шпунтового ограждения котлована многоквартирного жилого дома с подземной парковкой с применением предварительного напряжения.

Проектируемая площадка вписана в плотную городскую застройку г. Ульяновска. Рельеф участка ровный, искусственно спланированный. Геологолитологическая характеристика представлена в таблице 1.

Геологическое строение площадки способствует образованию нового временного водоносного горизонта типа «верховодки», что является неблагоприятным физико-геологическим процессом, осложняющим строительство и эксплуатацию проектируемого жилого дома.

Проанализированы данные инженерно-геологических изысканий, выполненных на площадке строительства, схемы и диапазон нагрузки на подпорные стенки, на основании чего предложен вариант предварительнонапряженной стенки. Конструктивные и технологические предложения имеют практическую значимость, т.к. позволяют решать задачу оптимизации технического решения ограждения котлована по сравнению с существующим проектом. На строительном рынке реализуется несколько разновидностей шпунта для ограждения, который представляет собой корытообразный профиль, длина элемента может доходить до 35 метров, а ширина до 80 см. объекта Проектировщиками исследуемого предложен ШПУНТ Л5, изготовленный из сталей марок СТЗКП либо 16 ХГ, шириной 42 см, вес 1 п.м. – $100 \text{ кг, вес } 1 \text{ м}^2 - 217 \text{ кг. Общая масса } 471,0 \text{ тн, сметная стоимость устройства}$ такой стенки составляет 23636,0 тыс.руб. При стоимости услуг по погружению шпунта 4200,0 тыс.руб., полная стоимость рассматриваемого варианта составляет 27836,0 тыс.руб.

Таблица 1 Геолого-литологическая характеристика участка строительства

Номер	Состав слоя	Примечания
слоя		
Современные техногенные отложения (tQ_{IV})		
ИГЭ-1	Насыпной грунт, представлен смесью глины,	Водовмещающий
	песка, строительного и бытового мусора.	грунт
	Мощность слоя 0,5÷4,5 м	
Средне-верхнечетвертичные аллювиально-делювиальные отложения (a - dQ_{II-IV})		
ИГЭ-2	Песок мелкий, средней плотности, с	Водовмещающий
	включениями прослоев суглинка и глины.	грунт
	Мощность слоя 1,1÷3,0 м.	
ИГЭ-3	Песок пылеватый, водонасыщенный, средней	
	плотности. Мощность слоя 2,6÷3,4 м.	
ИГЭ-4	Суглинок тугопластичный, опесчаненный, с	Грунт залегает в
	включениями прожилков карбонатов и	зоне транзита УГВ
	небольших прослоек песка. Мощность слоя	
	1,3÷1,7 м.	
ИГЭ-5	Глина полутвердая, опесчаненная, с	Грунт
	включениями небольших прослоек песка.	ненабухающий
	Мощность слоя 2,0÷2,1 м.	

В качестве альтернативного варианта авторами предложено использовать стальные трубы, бывшие в употреблении, диаметром 530 мм, толщина стенки 8 мм в количестве 157 штук, общим весом 215 т. Сметная стоимость предлагаемого решения составляет 8600,0 тыс.руб., без учета устройства систем предварительного напряжения [4].

С целью уменьшения объема материала технология погружения свай сопровождается вытеснением грунта. Сущность данного метода заключается в бурении лидирующей скважины на глубину 7÷8 м. В указанную скважину погружается труба и осуществляется её добивка до проектной отметки на глубину 5÷7 м (рис. 3).

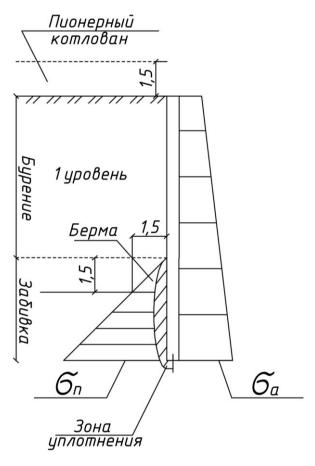


Рисунок 3 - Расчётная схема подпорной стенки

В процессе забивки полой трубы в последней формируется грунтовая пробка. Таким образом, осуществляется погружение не полого, а цельного элемента, что обуславливает формирование в грунте уплотненной области, т.е предварительное напряжение грунта.

Специалистам в области геотехники известно, что сопротивление грунта горизонтальному перемещению буровой сваи существенно (в 2÷2,5 раза) меньше, чем при технологии погружения забивной сваи, что сопровождается вытеснением грунта. Проявляется эффект уплотнения, обусловливающий повышение сопротивления грунта горизонтальному смещению стенки.

На ряду с указанным эффективным горизонтальное усилие увеличивается за счёт устройства грунтовой бермы и установки распорок. В предложении [4] шаг расстановки труб составляет 2,5 диаметра трубы. Распорки диаметром 273 мм имеют уширенные наконечники диаметром 430 мм. Наконечник представляет собой трубобетонный элемент длиной 0,5 м. Расчётодопустимое усилие в распорке $N_{\rm p.g.}$ принято равным 300 кН. Контролируемое усилие натяжения при вдавливании на 25% должно превышать указанные значения $N_{\rm p.g.}$.

Наконечник собирается из элементов, которые свариваются при монтаже. Количество последних определяется по мере достижения контролируемого натяжения. Распорка состоит из двух частей, которые соединяются монтажной обоймой. Указанная обойма приварена к верхней части распорки и по мере включения наконечника в работу обойма приваривается к нижней части распорки (рис. 4). Особое внимание в ведении работ следует обратить на этапе включения распорок в работу.

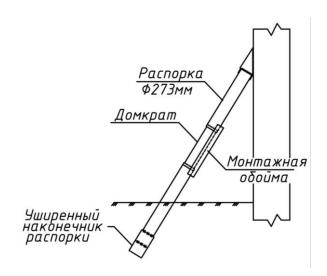


Рисунок 4 - Схема устройства распорки

Стоимость устройства распорки с обеспечением контролируемого усилия и выполнения стабилизации составляет порядка 7 500,0 тыс.руб. Общая стоимость устройства стенки по предложению около 16 100,0 тыс.руб.

В целом комбинированный подход к технологии устройства шпунтовой стенки, включающий эффект уплотнения грунта, пригруз от бермы и предварительное напряжение конструкции стенки позволили существенно уменьшить сметную стоимость устройства котлована, в том числе и за счёт использования в качестве импортозамещения шпунта Ларсен металлических труб, бывших в употреблении.

Библиографический список:

- 1. Справочное пособие к СНиП 2.09.03-85. Проектирование подпорных стен и стен подвалов. Москва. Стройиздат. 1990
- 2. Инженерный метод расчёта горизонтально нагруженных групп свай; Учебное пособие для вузов. В.В. Знаменский. М.: Изд-во АСВ. 2000. 128 с.
- 3. Глухов В.С. Устройство подпорной стенки на объекте автосалона «КІА» в г. Самара // Материалы III Международной научно-практической конференции. Актуальные проблемы современного фундаментостроения с учетом энергосберегающих технологий: материалы III Международной научно-практической конференции. Пенза: Изд-во ПГУАС, 2013. С. 26-29.
- 4. Глухов В.С. Оптимизация подпорной стенки путем предварительного напряжения / В.С. Глухов, Н.И. Тарасеева, Н.М. Иванов, Т.С. Шаронова // Актуальные проблемы современного фундаментостроения с учетом энергосберегающих технологий: материалы VII Всероссийской научнотехнической конференции. Пенза: Изд-во ПГУАС, 2016. С. 30-34.