ОЦЕНКА НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ЦЕНТРАЛЬНОЙ ЗОНЫ УЗЛОВЫХ СОПРЯЖЕНИЙ КОЛОНН С БАЛКАМИ МОНОЛИТНЫХ КАРКАСНЫХ ЗДАНИЙ

Артюшин Дмитрий Викторович,

Пензенский государственный университет архитектуры и строительства, г. Пенза,

кандидат технических наук, доцент, декан Инженерно-строительного института.

Коновалов Павел Владимирович,

Пензенский государственный университет архитектуры и строительства, г. Пенза,

аспирант кафедры «Строительные конструкции».

Аннотация

В статье приводятся полученные численным методом результаты исследования монолитных узлов сопряжения колонн крайнего ряда с балками многоэтажных каркасов зданий, оценивается характер их напряженнодеформированного состояния, рассматриваются основные характерные схемы разрушения.

Ключевые слова: монолитные каркасы зданий, узлы сопряжения колонн с балками, армирование, напряженное состояние, схемы разрушения.

ASSESSMENT OF STRESS-STRAIN STATE CENTRAL NODE CONNECTION ZONE OF COLUMNS WITH BEAMS OF MONOLITHIC FRAME BUILDINGS

Artyushin Dmitriy Viktorovich,

Penza State University of Architecture and Construction, Penza, Candidate of Sciences, Associate Professor, Dean of the Civil Engineering Institute.

Konovalov Pavel Vladimirovich,

Penza State University of Architecture and Construction, Penza, Postgraduate student of the department "Building constructions".

Abstract

The article presents the results of the study of monolithic joints of the columns of the extreme row with the beams of multi-storey frames of buildings, obtained by the numerical method, the nature of their stress-strain state is estimated, and the main characteristic schemes of destruction are considered.

Keywords: monolithic frames of buildings, knots connecting of columns with beams, reinforcement, stress state, destruction.

При проектировании зданий и сооружений из монолитного железобетона требуется выполнение большого количества достаточно трудоемких расчетов, что занимает длительное время, а вручную и не всегда представляется возможным. Современное развитие вычислительной техники, в частности таких программных комплексов как «Лира», «SCAD Soft» и др., дает возможность получить достаточно точную картину распределения и величины внутренних усилий и напряжений в основных несущих элементах каркасов зданий, на основании которых осуществляется их оптимальное конструирование.

В ПГУАС в рамках выполнения научной работы выполнен численный эксперимент по исследованию монолитных узлов сопряжения колонн крайних рядов с балками (ригелями) многоэтажных каркасных зданий с помощью ПК «Лира-САПР 2017». Основной целью проведенного исследования являлось определение характера распределения внутренних усилий, а также выявление наиболее эффективных вариантов армирования.

Узлы сопряжения колонн с балками приняты в соответствии с утвержденной программой исследований [1, 2] из тяжелого бетона класса B25. Сечение колонн и ригелей составляет 300×300 мм. Рабочая арматура колонны и ригеля определена по расчету прочности нормальных и наклонных сечений в соответствии с требованиями СП 63.13330.2018 [3]. Продольное армирование колонны принято из четырех стержней Ø20 мм класса A400, ригеля – 3Ø20A400. Анкеровка продольной арматуры ригеля производится ее заведением в тело колонны. Армирование центральной части исследуемых узлов рассмотрено в нескольких вариантах [1, 2]: №1 – продольная арматура ригеля и поперечные хомуты, рисунок 1, а; №2 – перпендикулярные и наклонные к оси колонны хомуты Ø8 мм из стали класса B500, рисунок 1, б; №3 – арматурные сетки с наклонными стержнями Ø6B500 с размером ячейки 50×50 мм, рисунок 1, в.

Рисунок 1 – Варианты армирования центральной части узла: а – продольной арматурой и поперечными стержнями, перпендикулярными к оси колонны (№1); б – продольной арматурой и наклонными поперечными стержнями (№2); в – продольной арматурой и сетками (№3)

При моделировании эксперимента нагрузка на ригель передавалась ступенями по 8 т с максимальной величиной загружения 40 т, а на ствол колонны – 100 т. Опорная часть колонны имела жесткое закрепление с поверхностью. Для арматурных стержней был принят физически нелинейный универсальный пространственный стержневой конечный элемент (тип 210), для бетона – физически нелинейный универсальный пространственный восьми узловой изопараметрический конечный элемент (тип 236).

В результате выполненного расчета получены величины и выявлен характер распределения нормальных, касательных и главных напряжений, а также определены вертикальные перемещения (прогибы) узлов расчетной схемы, рисунки 2-4. Результаты расчета подтверждаются ранее проведенными экспериментальными исследованиями [4-6].

Рисунок 2 – Изополя распределения главных напряжений о при вариантах

Рисунок 3 – Изополя распределения касательных напряжений т при вариантах армирования: а – №1; б – №2; в – №3

Рисунок 4 – Вертикальные перемещения по оси *Z* элементов расчетной схемы при вариантах армирования: а – №1; б – №2; в – №3

Установлено, что распределение главных напряжений *о*, характеризуется наличием в зоне исследуемого узла двух зон – сжатой и растянутой, рисунок 2. Наибольшая концентрация растягивающих усилий наблюдается в верхней

части узлов, а сжимающих – в нижней. При этом следует отметить, что предельные величины сжимающих И растягивающих напряжений В исследуемой серии образцов практически идентичны и составляют $\sigma_{min} \approx -1480$ т / м² $\sigma_{max} \approx 107$ т / м². Однако величины касательных напряжений τ (рисунок 3) варьируются и находятся в диапазоне $\tau_{min}\approx-753\div-771~{\rm t}~{\rm /}~{\rm m}^2$ τ_{max} ≈ 476 ÷ 540 т / м², что констатирует асимметричность работы исследуемой узловой зоны. Максимальные вертикальные перемещения элементов расчетной схемы при рассмотренных вариантах армирования изменялись в пределах от 6,94 до 8,7 мм, рисунок 4.

Принятое армирование образцов (в виде наклонных стержней к оси колонны и сеток с наклонными стержнями – варианты 2 и 3, соответственно) совпадает с линиями действия главных растягивающих, сжимающих и касательных напряжений, что повышает прочность и трещиностойкость центральной части монолитных узлов сопряжения колонн и балок и способствует снижению количества поперечной арматуры [7].

Следует заметить, что использование современных программных комплексов для расчета позволяет получить не только качественную картину распределения внутренних усилий, но и выявить характер разрушения элементов, рисунки 5-7.

Анализ выявленных схем разрушения исследуемых образцов показал отличия уже при втором этапе загружения при нагрузке в 16 т, рисунки 5-7. На данном этапе узлы центральной части, армированные продольной арматурой и поперечными стержнями, перпендикулярными к оси колонны (вариант №1), и наклонными стержнями (вариант №2), имеют зоны разрушения по границе примыкания верхней грани ригеля к колонне. В то время, как в узле, армированном сетками (вариант №3), данная область не выявлена, поскольку расположение поперечной арматуры совпадает с направлениями действия внутренних усилий [7] и, тем самым, повышает трещиностойкость.

Рисунок 5 – Характер разрушения исследуемого образца с армированием центральной части узла продольной арматурой и поперечными стержнями, перпендикулярными к оси колонны (вариант №1) при величине нагрузки на ригель: а – 8 т; б – 16 т; в – 24 т; г – 32 т

Рисунок 6 – Характер разрушения исследуемого образца с армированием центральной части узла продольной арматурой и наклонными поперечными стержнями (вариант №2) при величине нагрузки на ригель: а – 8 т; б – 16 т; в – 24 т; г – 32 т

Рисунок 7 – Характер разрушения исследуемого образца с армированием центральной части узла продольной арматурой и сетками (вариант №3) при величине нагрузке на ригель: a – 8 т; б – 16 т; в – 24 т; г – 32 т

Наряду экспериментом с численным планируется проведение физического эксперимента, который позволит получить реальную картину разрушения исследуемых образцов узлов сопряжения колонн с балками, необходимую ДЛЯ совершенствования методов расчета и разработки рекомендаций по применению новых наиболее эффективных вариантов армирования несущих конструкций многоэтажных зданий и сооружений.

Библиографический список:

1. Артюшин Д.В. Программа экспериментальных исследований монолитных узлов сопряжения колонн крайнего ряда с балками / Д.В. Артюшин, П.В. Коновалов [Электронный ресурс] // Моделирование и механика конструкций. 2019. № 10. Систем. требования: Adobe Acrobat Reader. URL: http://mechanicspguas.ru/Plone/nomerazhurnala/no-10-nov-2019/stroitelnye-konstrukcii-zdaniya-i-sooruzheniya/3.16/view

2. Артюшин Д.В. Развитие экспериментальной базы исследования монолитных узлов сопряжения колонн с балками каркасных зданий / Д.В. Артюшин, П.В. Коновалов // Сборник трудов Всероссийской научнотехнической конференции «Актуальные проблемы городского строительства». Пенза. 2020. С. 85-89.

3. СП 63.13330.2018. Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003. М., Минстрой России, 2018.

4. Баранова Т.И. Развитие экспериментальной базы аналоговых моделей узлов сопряжения колонн и балок монолитных каркасов / Т.И. Баранова, В.А. Новиков, Д.В. Артюшин // Вестник Отделения строительных наук Российской академии архитектуры и строительных наук. 2005. № 9. С. 67.

5. Баранова Т.И. Совершенствование метода расчета монолитных узлов сопряжения железобетонных балок на основе аналоговых расчетных стержневых моделей / Т.И. Баранова, Д.В. Артюшин, А.И. Агуреев // Academia. Архитектура и строительство. 2007. № 1. С. 74–78.

6. Артюшин Д.В., Шумихина В.А., Азимова Я.А. Экспериментальноаналитические исследования монолитных узлов сопряжения железобетонных балок [Электронный ресурс] // Моделирование и механика конструкций. 2016. №3. Систем. требования: Adobe Acrobat Reader. URL: http://mechanics.pguas.ru/Plone/nomera-zhurnala/no3/stroitelnye-konstrukciizdaniya-i-sooruzheniya/3.15/at_download/file

7. Артюшин Д.В. Исследование монолитных узлов сопряжения колонн крайнего ряда с балками численным методом / Д.В. Артюшин, П.В. Коновалов, И.А. Цырулева // Эффективные строительные конструкции: теория и практика. Сборник статей XX Международной научно-технической конференции. Под редакцией Н.Н. Ласькова. Пенза, 2020. С. 16-20.