ВЛИЯНИЕ УГЛА ОРИЕНТАЦИИ ГОРИЗОНТАЛЬНЫХ ШВОВ НА ПРОЧНОСТЬ СЖАТЫХ И РАСТЯНУТЫХ НАКЛОННЫХ ПОЛОС В СТЕНАХ ИЗ КИРПИЧНОЙ КЛАДКИ

Ласьков Николай Николаевич,

Пензенский государственный университет архитектуры и строительства, г. Пенза,

доктор технических наук, профессор, зав. кафедрой «Строительные конструкции».

Ласьков Александр Николаевич,

Пензенский государственный университет архитектуры и строительства, г. Пенза,

Подогова Вероника Игоревна,

Пензенский государственный университет архитектуры и строительства, г. Пенза, студент.

Аннотация

аспирант.

Приводятся результаты анализа изменения прочности сжатых и растянутых наклонных полос в стенах из кирпичной кладки при изменении угла ориентации горизонтальных швов.

Ключевые слова: прочность, кирпичная кладка, сжатые и растянутые наклонные полосы, угол ориентации горизонтальных швов.

INFLUENCE OF THE CORNER TO ORIENTATION HORIZONTAL SEAM ON TOUGHNESS COMPRESSED AND SPRAINED TILTED BANDS IN WALL FROM BRICKWORK

Laskov Nikolay Nikolaevich,

Penza State University of Architecture and Construction, Penza,

Doctor of Sciences, Professor, head of the department "Building constructions".

Laskov Aleksandr Nikolaevich,

Penza State University of Architecture and Construction, Penza, post-graduate student.

Podogowa Weronika Igorewna,

Penza State University of Architecture and Construction, Penza, student.

Abstract

Happen to the results of the analysis of the change to toughness compressed and sprained tilted bands in wall from brickwork when change the corner to orientation horizontal seam.

Keywords: toughness, brickwork, compressed and sprained tilted bands, corner to orientation horizontal seam.

В результатах научных исследований, проведенных в ПГУАС на основе приведены комплексной программы, многочисленные данные экспериментальных исследований стен. Факторный анализ результатов этих исследований позволил выявить закономерности влияния основных факторов на прочность стен при совместном действии вертикальных и горизонтальных сил. Получено подтверждение, что работа стен значительно отличается от работы балочных элементов, и стены при совместном действии вертикальных и сил испытывают сложное напряженное состояние. Их горизонтальных сопротивление определяется в первую очередь факторами, присущими только стенам, к которым относятся: соотношение вертикальных и горизонтальных сил, соотношение высоты и длины, наличие проемов, армирование поля стен, ортотропные свойства материала для стен из каменной кладки. В этой работе описываются аппроксимационные модели влияние изменения угла ориентации горизонтальных швов в стенах из кирпичной кладки на прочность сжатых и растянутых наклонных полос.

Каменная кладка состоит из двух материалов - камня и раствора - и из-за наличия горизонтальных швов обладает неоднородной регулярной ортотропной структурой. На основе анализа физического и численного экспериментов полученных в ПГУАС [1, 2, 3, 4, 5], а также по результатам исследований ученых Нью-Кастлинского университета[6, 7] установлено, что прочность кирпичной кладки зависит от ориентации горизонтальных швов относительно направлений главных сжимающих (σ_1) и растягивающих (σ_2) напряжений. Оказалось, что с уменьшением угла наклона условной сжатой полосы величина напряжений σ_1 падает, а величина напряжений σ_2 возрастает. Это убеждает в том, что прочность каменной кладки при двухосном напряженном состоянии необходимо оценивать с учетом ориентации постельных швов относительно направления главных сжимающих напряжений.

На основе совместного анализа результатов собственных экспериментов и экспериментов, проведенных учеными Нью-Кастлинского университета получены графики (модели), описывающие зависимости прочности каменной кладки для главных сжимающих (σ_1) и растягивающих (σ_2) напряжений при изменении угла наклона постельных швов. Геометрическая интерпретация зависимостей показана на рис. 1.

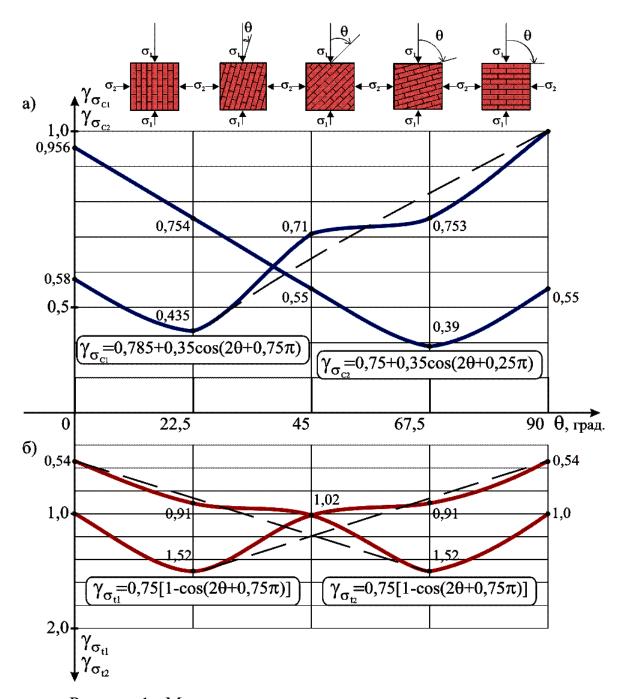


Рисунок 1 - Модели влияния ориентации горизонтальных швов относительно направления главных напряжений на прочность каменной кладки при сжатии и растяжении

Для учета влияния угла наклона постельных швов на прочностные характеристики каменной кладки при оценки прочности стен на совместное действие вертикальных и горизонтальных сил разработаны аналитические зависимости понижающих коэффициентов. Предлагается для учета изменения прочности каменной кладки сжатой наклонной полосы использовать

коэффициент γ_{σ_c} (см. рис. 1,а). Для учета изменения прочности каменной кладки условно растянутой наклонной полосы использовать коэффициент γ_{σ_t} (см. рис. 1,б).

Аналитические выражения аппроксимационных моделей изменения прочности каменной кладки от изменения угла наклона постельных швов получены на основе математического анализа экспериментальных данных. Аппроксимирующие функции представлены в виде уравнений косинусообразных кривых:

$$\gamma_{\sigma} = C + A \cdot \cos(w \cdot \theta + \varphi_0) \tag{1}$$

Значения коэффициентов C, A, w и ϕ_0 определим методом наименьших квадратов отдельно для прочности каменной кладки сжатой наклонной полосы и для её прочности условно растянутой наклонной полосы.

С целью уменьшения объёма материала приведем окончательные аналитические выражения для аппроксимационных моделей.

В результате аналитическое выражение аппроксимационной модели влияния угла наклона горизонтальных швов к направлению главных сжимающих напряжений на прочность каменной кладки сжатой наклонной полосы можно записать:

$$\gamma_{\sigma_{c1}} = 0.785 + 0.35 \cdot \cos(2 \cdot \theta + 0.75\pi) \tag{2}$$

или в виде:

$$\gamma_{\sigma_{c2}} = 0.75 + 0.35 \cdot \cos(2 \cdot \theta + 0.25\pi).$$
 (3)

Общий вид модели показан на рис. 1а.

Аналитическое выражение аппроксимационной модели влияния угла наклона горизонтальных швов к направлению главных растягивающих напряжений на прочность кирпичной кладки условно растянутой наклонной полосы можно записать:

$$\gamma_{\sigma_{r1}} = 0.75[1 - \cos(2 \cdot \theta + 0.75\pi)]$$
 (5)

или в виде:

$$\gamma_{\sigma_{t1}} = 0.75 [1 - \cos(2 \cdot \theta + 0.25\pi)]. \tag{6}$$

Общий вид модели показан на рис. 1,б.

Разработанная аналитическая модель влияния угла наклона горизонтальных швов на прочностные свойства каменной кладки позволяет учитывать изменение прочности каменной кладки при изменении соотношения вертикальных и горизонтальных сил.

Библиографический список:

- 1. Баранова Т.И., Ласьков Н.Н. Экспериментальные исследования диафрагм жесткости из каменной кладки // Экспресс информация Строительные конструкции. Сер. 8 ВНИИИС Госстроя СССР. Вып. 10. М. 1987. С. 10-14.
- 2. Баранова Т.И., Ласьков Н.Н., Артюшин Д.В. Основы сопротивления стен из каменной кладки совместному действию вертикальных и горизонтальных сил (деп. рукоп. монографии № 11782). М.: Госстрой России, ВНИИНТПИ. 2000. С. 92.
- 3. Баранова Т.И., Ласьков Н.Н., Артюшин Д.В. Сопротивление стен из каменной кладки при совместном действии вертикальных и горизонтальных сил // БСТ №9. М.: РААСН. 1999. С. 17-18.
- 4. Брусенцов Г.Н., Ласьков Н.Н. Экспериментальные исследования диафрагм жесткости из каменной кладки при совместном действии вертикальных и горизонтальных нагрузок // Сборник научных трудов "Исследования по строительной механике и надежности конструкций". М.: ЦНИИСК им. Кучеренко. 1986. С. 196-201.
- Гениев Г.А. О критерии прочности каменной кладки при плоском напряженном состоянии // Строительная механика и расчет сооружений. № 2.
 М. 1979.
- 6. Dhanasekar M., Page A.W., Kleeman P.W. The failure of brick masonry under biaxial stresses // Proc. Inst. Civ. Eng., Part 2. Vol. 79. 1985. P. 295-313.

7. Hendry A.W. A note on the strength of brickwork in combined racking shear and compression // Proc. Brit. Ceram. Soc. № 27. 1978.P. 47-52.